Radial tidy tree
D3’s tree layout implements the Reingold–Tilford “tidy” algorithm, improved by Buchheim et al., for constructing hierarchical node-link diagrams. Tidy trees are typically more compact than cluster dendrograms, which place all leaves at the same level. See also the Cartesian variant.
const width = 960;
const radius = width / 2;
const tree = d3.tree()
.size([2 * Math.PI, radius])
.separation((a, b) => (a.parent == b.parent ? 1 : 2) / a.depth);
const root = tree(d3.hierarchy(data)
.sort((a, b) => d3.ascending(a.data.name, b.data.name)));
const svg = d3.create("svg");
svg.append("g")
.attr("fill", "none")
.attr("stroke", "#555")
.attr("stroke-opacity", 0.4)
.attr("stroke-width", 1.5)
.selectAll("path")
.data(root.links())
.join("path")
.attr("d", d3.linkRadial()
.angle((d) => d.x)
.radius((d) => d.y));
svg.append("g")
.selectAll("circle")
.data(root.descendants())
.join("circle")
.attr("transform", (d) => `
rotate(${d.x * 180 / Math.PI - 90})
translate(${d.y},0)
`)
.attr("fill", (d) => d.children ? "#555" : "#999")
.attr("r", 2.5);
svg.append("g")
.attr("font-family", "sans-serif")
.attr("font-size", 10)
.attr("stroke-linejoin", "round")
.attr("stroke-width", 3)
.selectAll("text")
.data(root.descendants())
.join("text")
.attr("transform", (d) => `
rotate(${d.x * 180 / Math.PI - 90})
translate(${d.y},0)
rotate(${d.x >= Math.PI ? 180 : 0})
`)
.attr("dy", "0.31em")
.attr("x", (d) => d.x < Math.PI === !d.children ? 6 : -6)
.attr("text-anchor", (d) => d.x < Math.PI === !d.children ? "start" : "end")
.text((d) => d.data.name)
.clone(true).lower()
.attr("stroke", "white");
display(svg.node());
svg.call(autoBox);
function autoBox(svg) {
svg.attr("viewBox", function() {
const {x, y, width, height} = this.getBBox();
return [x, y, width, height];
});
}
const data = FileAttachment("data/flare.json").json().then(display);