Stacked-to-grouped bars
Animations can preserve object constancy, allowing the reader to follow the data across views. See Heer and Robertson for more.
const n = 5; // number of series
const m = 58; // number of values per series
const xz = d3.range(m); // the x-values shared by all series
const yz = d3.range(n).map(() => bumps(m)); // the y-values of each of the n series
const width = 928;
const height = 500;
const marginTop = 0;
const marginRight = 0;
const marginBottom = 10;
const marginLeft = 0;
const y01z = d3.stack()
.keys(d3.range(n))
(d3.transpose(yz)) // stacked yz
.map((data, i) => data.map(([y0, y1]) => [y0, y1, i]));
const yMax = d3.max(yz, (y) => d3.max(y));
const y1Max = d3.max(y01z, (y) => d3.max(y, (d) => d[1]));
const x = d3.scaleBand()
.domain(xz)
.rangeRound([marginLeft, width - marginRight])
.padding(0.08);
const y = d3.scaleLinear()
.domain([0, y1Max])
.range([height - marginBottom, marginTop]);
const color = d3.scaleSequential(d3.interpolateBlues)
.domain([-0.5 * n, 1.5 * n]);
const svg = d3.create("svg")
.attr("width", width)
.attr("height", height)
.attr("style", "max-width: 100%; height: auto;");
const rect = svg.selectAll("g")
.data(y01z)
.join("g")
.attr("fill", (d, i) => color(i))
.selectAll("rect")
.data((d) => d)
.join("rect")
.attr("x", (d, i) => x(i))
.attr("y", height - marginBottom)
.attr("width", x.bandwidth())
.attr("height", 0);
svg.append("g")
.attr("transform", `translate(0,${height - marginBottom})`)
.call(d3.axisBottom(x).tickSizeOuter(0).tickFormat(() => ""));
display(svg.node());
function transitionGrouped() {
y.domain([0, yMax]);
rect.transition()
.duration(500)
.delay((d, i) => i * 20)
.attr("x", (d, i) => x(i) + x.bandwidth() / n * d[2])
.attr("width", x.bandwidth() / n)
.transition()
.attr("y", (d) => y(d[1] - d[0]))
.attr("height", (d) => y(0) - y(d[1] - d[0]));
}
function transitionStacked() {
y.domain([0, y1Max]);
rect.transition()
.duration(500)
.delay((d, i) => i * 20)
.attr("y", (d) => y(d[1]))
.attr("height", (d) => y(d[0]) - y(d[1]))
.transition()
.attr("x", (d, i) => x(i))
.attr("width", x.bandwidth());
}
function update(layout) {
if (layout === "stacked") transitionStacked();
else transitionGrouped();
}
// Returns an array of m pseudorandom, smoothly-varying non-negative numbers.
// Inspired by Lee Byron’s test data generator.
// http://leebyron.com/streamgraph/
function bumps(m) {
const values = [];
// Initialize with uniform random values in [0.1, 0.2).
for (let i = 0; i < m; ++i) {
values[i] = 0.1 + 0.1 * Math.random();
}
// Add five random bumps.
for (let j = 0; j < 5; ++j) {
const x = 1 / (0.1 + Math.random());
const y = 2 * Math.random() - 0.5;
const z = 10 / (0.1 + Math.random());
for (let i = 0; i < m; i++) {
const w = (i / m - y) * z;
values[i] += x * Math.exp(-w * w);
}
}
// Ensure all values are positive.
for (let i = 0; i < m; ++i) {
values[i] = Math.max(0, values[i]);
}
return values;
}
update(layout); // side effect to trigger transition