Stacked-to-grouped bars

Animations can preserve object constancy, allowing the reader to follow the data across views. See Heer and Robertson for more.

const n = 5; // number of series
const m = 58; // number of values per series
const xz = d3.range(m); // the x-values shared by all series
const yz = d3.range(n).map(() => bumps(m)); // the y-values of each of the n series

const width = 928;
const height = 500;
const marginTop = 0;
const marginRight = 0;
const marginBottom = 10;
const marginLeft = 0;

const y01z = d3.stack()
    .keys(d3.range(n))
  (d3.transpose(yz)) // stacked yz
  .map((data, i) => data.map(([y0, y1]) => [y0, y1, i]));

const yMax = d3.max(yz, (y) => d3.max(y));
const y1Max = d3.max(y01z, (y) => d3.max(y, (d) => d[1]));

const x = d3.scaleBand()
    .domain(xz)
    .rangeRound([marginLeft, width - marginRight])
    .padding(0.08);

const y = d3.scaleLinear()
    .domain([0, y1Max])
    .range([height - marginBottom, marginTop]);

const color = d3.scaleSequential(d3.interpolateBlues)
    .domain([-0.5 * n, 1.5 * n]);

const svg = d3.create("svg")
    .attr("width", width)
    .attr("height", height)
    .attr("style", "max-width: 100%; height: auto;");

const rect = svg.selectAll("g")
  .data(y01z)
  .join("g")
    .attr("fill", (d, i) => color(i))
  .selectAll("rect")
  .data((d) => d)
  .join("rect")
    .attr("x", (d, i) => x(i))
    .attr("y", height - marginBottom)
    .attr("width", x.bandwidth())
    .attr("height", 0);

svg.append("g")
    .attr("transform", `translate(0,${height - marginBottom})`)
    .call(d3.axisBottom(x).tickSizeOuter(0).tickFormat(() => ""));

display(svg.node());

function transitionGrouped() {
  y.domain([0, yMax]);

  rect.transition()
      .duration(500)
      .delay((d, i) => i * 20)
      .attr("x", (d, i) => x(i) + x.bandwidth() / n * d[2])
      .attr("width", x.bandwidth() / n)
    .transition()
      .attr("y", (d) => y(d[1] - d[0]))
      .attr("height", (d) => y(0) - y(d[1] - d[0]));
}

function transitionStacked() {
  y.domain([0, y1Max]);

  rect.transition()
      .duration(500)
      .delay((d, i) => i * 20)
      .attr("y", (d) => y(d[1]))
      .attr("height", (d) => y(d[0]) - y(d[1]))
    .transition()
      .attr("x", (d, i) => x(i))
      .attr("width", x.bandwidth());
}

function update(layout) {
  if (layout === "stacked") transitionStacked();
  else transitionGrouped();
}

// Returns an array of m pseudorandom, smoothly-varying non-negative numbers.
// Inspired by Lee Byron’s test data generator.
// http://leebyron.com/streamgraph/
function bumps(m) {
  const values = [];

  // Initialize with uniform random values in [0.1, 0.2).
  for (let i = 0; i < m; ++i) {
    values[i] = 0.1 + 0.1 * Math.random();
  }

  // Add five random bumps.
  for (let j = 0; j < 5; ++j) {
    const x = 1 / (0.1 + Math.random());
    const y = 2 * Math.random() - 0.5;
    const z = 10 / (0.1 + Math.random());
    for (let i = 0; i < m; i++) {
      const w = (i / m - y) * z;
      values[i] += x * Math.exp(-w * w);
    }
  }

  // Ensure all values are positive.
  for (let i = 0; i < m; ++i) {
    values[i] = Math.max(0, values[i]);
  }

  return values;
}
update(layout); // side effect to trigger transition
✎ Suggest changes to this page