Bivariate choropleth
Diabetes and obesity prevalence by county, 2020. Colors: Joshua Stevens. Data: CDC. For details on the data and the method, read our tutorial. See also the D3 version.
Plot.plot({
width: 975,
height: 610,
projection: "identity",
color,
marks: [
Plot.geo(
counties,
Plot.centroid({
stroke: "white",
strokeWidth: 0.125,
fill: (d) => bivariateClass(index.get(d.id)),
title: (d) => {
const name = `${d.properties.name}, ${states.get(d.id.slice(0, 2)).name}`;
const value = index.get(d.id);
if (!value || (isNaN(value.diabetes) && isNaN(value.obesity)))
return `${name}\nno data`;
const [dc, oc] = bivariateClass(value);
return `${name}\n${
isNaN(value.diabetes) ? "No Data" : value.diabetes
}% Diabetes${label(dc)}\n${
isNaN(value.obesity) ? "No Data" : value.obesity
}% Obesity${label(oc)}`;
},
tip: true
})
),
Plot.geo(statemesh, {stroke: "white"}),
() => svg`<g transform="translate(835,410)">${Plot.plot({
color,
axis: null,
margin: 0,
inset: 18,
width: 106,
height: 106,
style: "overflow: visible;",
marks: [
Plot.dot(d3.cross([0, 1, 2], [0, 1, 2]), {
x: ([a, b]) => b - a,
y: ([a, b]) => b + a,
symbol: "square",
rotate: 45,
r: 14,
fill: (d) => d,
title: ([a, b]) => `Diabetes${label(a)}\nObesity${label(b)}`,
tip: true
}),
Plot.text(["Obesity →"], {
frameAnchor: "right",
fontWeight: "bold",
rotate: -45,
dy: 10
}),
Plot.text(["← Diabetes"], {
frameAnchor: "left",
fontWeight: "bold",
rotate: 45,
dy: 10
})
]
})}`
]
})
const labels = ["low", "", "high"];
const label = (i) => labels[i] ? ` (${labels[i]})` : "";
const index = new Map(data.map(({county, ...rest}) => [county, rest]));
const data = FileAttachment("data/diabetes-obesity.csv")
.csv()
.then((rows) => rows.map((d) => {
d.obesity = +d.obesity; // type as numeric
d.diabetes = +d.diabetes;
return d;
}))
.then(display);
const d = d3.scaleQuantile(data.map((d) => d.diabetes), [0, 1, 2]).quantiles();
const o = d3.scaleQuantile(data.map((d) => d.obesity), [0, 1, 2]).quantiles();
function bivariateClass(value) {
const {diabetes: a, obesity: b} = value;
return [
isNaN(a) ? a : +(a > d[0]) + (a > d[1]),
isNaN(b) ? b : +(b > o[0]) + (b > o[1])
];
}
const color = Plot.plot({
color: {
domain: d3.range(9),
range: ["#e8e8e8", "#ace4e4", "#5ac8c8", "#dfb0d6", "#a5add3", "#5698b9", "#be64ac", "#8c62aa", "#3b4994"],
transform: ([a, b]) => 3 * a + b,
unknown: "#ccc" // See Valdez-Cordova, Alaska
}
}).scale("color");
const us = await FileAttachment("data/us-counties-albers-10m.json").json().then(display);
const counties = topojson.feature(us, us.objects.counties);
const states = new Map(us.objects.states.geometries.map((d) => [d.id, d.properties]));
const statemesh = topojson.mesh(us, us.objects.states, (a, b) => a !== b);