Published
Edited
Jun 5, 2022
8 forks
Importers
12 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
food = (await FileAttachment("food-texture.csv").csv({ typed: true })).map(
(row) => {
// add row names column
row.Name = row[""];
// and delete empty column
delete row[""];
return row;
}
)
Insert cell
SummaryTable(food)
Insert cell
Insert cell
food_scaled = scale(food.map(({ Name, ...columnsToKeep }) => columnsToKeep))
Insert cell
SummaryTable(food_scaled)
Insert cell
Insert cell
Insert cell
pca = new PCA(asMatrix(food_scaled), { center: true, scale: true })
Insert cell
Insert cell
viewof loadings = Inputs.table(
pca.getEigenvectors().data.map((eigenvectorForPCs, variableIndex) => {
const variable = Object.keys(food_scaled[0])[variableIndex];
const row = {
Variable: variable
};
eigenvectorForPCs.forEach((value, pcIndex) => {
row[`PC${pcIndex + 1}`] = value;
});
return row;
})
)
Insert cell
Insert cell
pca.getStandardDeviations()
Insert cell
Insert cell
pca.getExplainedVariance()
Insert cell
Insert cell
viewof scores = Inputs.table(
pca
.predict(asMatrix(food_scaled))
.toJSON()
.map((row, rowIndex) => {
const columns = Object.keys(food_scaled[rowIndex]);
const rowObj = {
Name: food[rowIndex].Name
};
columns.forEach((column, colIndex) => {
rowObj[`PC${colIndex + 1}`] = row[colIndex];
});
return rowObj;
})
)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
PCA = (await require("https://bundle.run/ml-pca@4.0.2")).PCA
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more