Public
Edited
Aug 1, 2023
154 forks
10 stars
Insert cell
Insert cell
chart = {
// Declare the chart dimensions and margins.
const width = 928;
const height = 500;
const marginTop = 30;
const marginRight = 0;
const marginBottom = 30;
const marginLeft = 40;

// Declare the x (horizontal position) scale.
const x = d3.scaleBand()
.domain(d3.groupSort(data, ([d]) => -d.frequency, (d) => d.letter)) // descending frequency
.range([marginLeft, width - marginRight])
.padding(0.1);
// Declare the y (vertical position) scale.
const y = d3.scaleLinear()
.domain([0, d3.max(data, (d) => d.frequency)])
.range([height - marginBottom, marginTop]);

// Create the SVG container.
const svg = d3.create("svg")
.attr("width", width)
.attr("height", height)
.attr("viewBox", [0, 0, width, height])
.attr("style", "max-width: 100%; height: auto;");

// Add a rect for each bar.
svg.append("g")
.attr("fill", "steelblue")
.selectAll()
.data(data)
.join("rect")
.attr("x", (d) => x(d.letter))
.attr("y", (d) => y(d.frequency))
.attr("height", (d) => y(0) - y(d.frequency))
.attr("width", x.bandwidth());

// Add the x-axis and label.
svg.append("g")
.attr("transform", `translate(0,${height - marginBottom})`)
.call(d3.axisBottom(x).tickSizeOuter(0));

// Add the y-axis and label, and remove the domain line.
svg.append("g")
.attr("transform", `translate(${marginLeft},0)`)
.call(d3.axisLeft(y).tickFormat((y) => (y * 100).toFixed()))
.call(g => g.select(".domain").remove())
.call(g => g.append("text")
.attr("x", -marginLeft)
.attr("y", 10)
.attr("fill", "currentColor")
.attr("text-anchor", "start")
.text("↑ Frequency (%)"));

// Return the SVG element.
return svg.node();
}
Insert cell
data = FileAttachment("alphabet.csv").csv({typed: "auto"})
Insert cell
Insert cell
Plot.plot({
y: {percent: true},
marks: [
Plot.barY(data, {x: "letter", y: "frequency", fill: "steelblue", sort: {x: "-y"}}),
Plot.ruleY([0])
]
})
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more