Published
Edited
Jul 20, 2022
3 forks
Importers
32 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
x_axis = [
Plot.ruleY([0], { x1: 0, x2: 800, dx: gap, strokeWidth: 0.5, stroke:'#999' }),
Plot.ruleX(ticks, { x: d => d, y: 0, insetBottom: -5, dx: gap, stroke:'#999' }),
Plot.text(ticks, { x: d => d, y: 0, dx: gap, dy: 12 }),

Plot.ruleY([0], { x1: 0, x2: -800, dx: -gap, strokeWidth: 0.5, stroke:'#999' }),
Plot.ruleX(ticks, { x: d => -d, y: 0, insetBottom: -5, dx: -gap, stroke:'#999' }),
Plot.text(ticks, { x: d => -d, y: 0, dx: -gap, dy: 12 }),

Plot.text(['← Männer in Tausend'], { x: 0, y: 0, dx: -gap, dy: 25, textAnchor: 'end', fontWeight: 'bold' }),
Plot.text(['Frauen in Tausend → '], { x: 0, y: 0, dx: gap, dy: 25, textAnchor: 'start', fontWeight: 'bold' })
]
Insert cell
y_axis = [
Plot.text(d3.range(0, 90, 10), { y: d => d }),
Plot.text(["Jahre"], { y: 80, dy: 10, fontWeight: 400 }),
Plot.ruleY(d3.range(5, 85, 5), { x1: d => d % 10 == 0 ? 0 : gap, x2: 100, dx: gap/2, strokeWidth: 0.2 }),
Plot.ruleY(d3.range(5, 85, 5), { x1: d => d % 10 == 0 ? 0 : -gap, x2: -100, dx: -gap/2, strokeWidth: 0.2 })
]
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
data_pivot = aq.from(data_long)
.derive({ Zensus: "'y_' + d.Zensus" })
.groupby("Alter_in_Jahren", "sexe", "categ")
.pivot("Zensus", "value")
Insert cell
Insert cell
Insert cell
Insert cell
interpol = (l) => {
let t = 2 * l - 1

return data_pivot.derive({
value: `Math.max(0, ${(t * (t - 1)) / 2} * d.y_1991
+ ${-(t + 1) * (t - 1)} * d.y_2006
+ ${((t + 1) * t) / 2} * d.y_2021)`
}) // Lagrange (quadratic) interpolation
}
Insert cell
Insert cell
interpol(0).orderby(0,1).view()
Insert cell
Insert cell
mortality_rate_by_age_sex = (age, sexe) => { // Germany mortality table, 2005: https://apps.who.int/gho/data/view.main.LT62050
if (age < 40) return 1
if (age < 45) return sexe == "M" ? 2 : 1
if (age < 50) return sexe == "M" ? 2.6 : 1.4
if (age < 55) return sexe == "M" ? 6 : 3
if (age < 60) return sexe == "M" ? 8 : 4
if (age < 65) return sexe == "M" ? 13 : 6
if (age < 70) return sexe == "M" ? 20 : 10
if (age < 75) return sexe == "M" ? 32 : 17
if (age < 80) return sexe == "M" ? 54 : 32
if (age < 85) return sexe == "M" ? 90 : 62
}
Insert cell
interpol3 = l => { // aging pyramids
let t = 2 * l

aq.addFunction('decrease_with_aging', decrease_with_aging, { override: true })
aq.addFunction('increase_with_getting_younger', increase_with_getting_younger, { override: true })
if (l <= 0.5) {
let decal = Math.round(15 * t), decal2 = 15 - decal
let dt1991 = data_pivot.select(0,1,2,'y_1991')
.derive({ y_1991: `op.decrease_with_aging(d.Alter_in_Jahren, d.sexe, ${decal}, d.y_1991)`} )
.derive({ Alter_in_Jahren: `d.Alter_in_Jahren + ${decal}` } )
.rename({ 'y_1991': 'y_1991_d' })
let dt1996 = data_pivot.select(0,1,2,'y_2006')
.derive({ Alter_in_Jahren: `d.Alter_in_Jahren - ${decal2}`} )
.derive({ y_2006: `op.increase_with_getting_younger(d.Alter_in_Jahren, d.sexe, ${decal2}, d.y_2006)`} )
.rename({ 'y_2006': 'y_2006_d' })
return dt1991.join_full(dt1996)
.orderby('Alter_in_Jahren').filter('d.Alter_in_Jahren >= 0 && d.Alter_in_Jahren < 85')
.derive({ value: `d.y_1991_d === undefined ? d.y_2006_d :
d.y_2006_d === undefined ? d.y_1991_d :
((1 - ${t*t}) * d.y_1991_d + ${t*t} * d.y_2006_d)`})
} else {
t = 2 * (l - 0.5)
let decal = Math.round(15 * t), decal2 = 15 - decal
let dt2006 = data_pivot.select(0,1,2,'y_2006')
.derive({ y_2006: `op.decrease_with_aging(d.Alter_in_Jahren, d.sexe, ${decal}, d.y_2006)`} )
.derive({ Alter_in_Jahren: `d.Alter_in_Jahren + ${decal}`})
.rename({ 'y_2006': 'y_2006_d' })
let dt2021 = data_pivot.select(0,1,2,'y_2021')
.derive({ Alter_in_Jahren: `d.Alter_in_Jahren - ${decal2}`} )
.derive({ y_2021: `op.increase_with_getting_younger(d.Alter_in_Jahren, d.sexe, ${decal2}, d.y_2021)`} )
.rename({ 'y_2021': 'y_2021_d' })
return dt2006.join_full(dt2021)
.orderby('Alter_in_Jahren').filter('d.Alter_in_Jahren >= 0 && d.Alter_in_Jahren < 85')
.derive({ value: `d.y_2006_d === undefined ? d.y_2021_d :
d.y_2021_d === undefined ? d.y_2006_d :
((1 - ${t*t}) * d.y_2006_d + ${t*t} * d.y_2021_d)`})
}
}
Insert cell
Insert cell
Insert cell
interpol3(0).view()
Insert cell
Insert cell
Insert cell
//https://www.ined.fr/fr/tout-savoir-population/chiffres/france/mortalite-cause-deces/taux-mortalite-sexe-age/
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more