Published
Edited
Jul 20, 2022
3 forks
Importers
32 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
x_axis = [
Plot.ruleY([0], { x1: 0, x2: 800, dx: gap, strokeWidth: 0.5, stroke:'#999' }),
Plot.ruleX(ticks, { x: d => d, y: 0, insetBottom: -5, dx: gap, stroke:'#999' }),
Plot.text(ticks, { x: d => d, y: 0, dx: gap, dy: 12 }),

Plot.ruleY([0], { x1: 0, x2: -800, dx: -gap, strokeWidth: 0.5, stroke:'#999' }),
Plot.ruleX(ticks, { x: d => -d, y: 0, insetBottom: -5, dx: -gap, stroke:'#999' }),
Plot.text(ticks, { x: d => -d, y: 0, dx: -gap, dy: 12 }),

Plot.text(['← Männer in Tausend'], { x: 0, y: 0, dx: -gap, dy: 25, textAnchor: 'end', fontWeight: 'bold' }),
Plot.text(['Frauen in Tausend → '], { x: 0, y: 0, dx: gap, dy: 25, textAnchor: 'start', fontWeight: 'bold' })
]
Insert cell
y_axis = [
Plot.text(d3.range(0, 90, 10), { y: d => d }),
Plot.text(["Jahre"], { y: 80, dy: 10, fontWeight: 400 }),
Plot.ruleY(d3.range(5, 85, 5), { x1: d => d % 10 == 0 ? 0 : gap, x2: 100, dx: gap/2, strokeWidth: 0.2 }),
Plot.ruleY(d3.range(5, 85, 5), { x1: d => d % 10 == 0 ? 0 : -gap, x2: -100, dx: -gap/2, strokeWidth: 0.2 })
]
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
data_pivot = aq.from(data_long)
.derive({ Zensus: "'y_' + d.Zensus" })
.groupby("Alter_in_Jahren", "sexe", "categ")
.pivot("Zensus", "value")
Insert cell
Insert cell
Insert cell
Insert cell
interpol = (l) => {
let t = 2 * l - 1

return data_pivot.derive({
value: `Math.max(0, ${(t * (t - 1)) / 2} * d.y_1991
+ ${-(t + 1) * (t - 1)} * d.y_2006
+ ${((t + 1) * t) / 2} * d.y_2021)`
}) // Lagrange (quadratic) interpolation
}
Insert cell
Insert cell
interpol(0).orderby(0,1).view()
Insert cell
Insert cell
mortality_rate_by_age_sex = (age, sexe) => { // Germany mortality table, 2005: https://apps.who.int/gho/data/view.main.LT62050
if (age < 40) return 1
if (age < 45) return sexe == "M" ? 2 : 1
if (age < 50) return sexe == "M" ? 2.6 : 1.4
if (age < 55) return sexe == "M" ? 6 : 3
if (age < 60) return sexe == "M" ? 8 : 4
if (age < 65) return sexe == "M" ? 13 : 6
if (age < 70) return sexe == "M" ? 20 : 10
if (age < 75) return sexe == "M" ? 32 : 17
if (age < 80) return sexe == "M" ? 54 : 32
if (age < 85) return sexe == "M" ? 90 : 62
}
Insert cell
interpol3 = l => { // aging pyramids
let t = 2 * l

aq.addFunction('decrease_with_aging', decrease_with_aging, { override: true })
aq.addFunction('increase_with_getting_younger', increase_with_getting_younger, { override: true })
if (l <= 0.5) {
let decal = Math.round(15 * t), decal2 = 15 - decal
let dt1991 = data_pivot.select(0,1,2,'y_1991')
.derive({ y_1991: `op.decrease_with_aging(d.Alter_in_Jahren, d.sexe, ${decal}, d.y_1991)`} )
.derive({ Alter_in_Jahren: `d.Alter_in_Jahren + ${decal}` } )
.rename({ 'y_1991': 'y_1991_d' })
let dt1996 = data_pivot.select(0,1,2,'y_2006')
.derive({ Alter_in_Jahren: `d.Alter_in_Jahren - ${decal2}`} )
.derive({ y_2006: `op.increase_with_getting_younger(d.Alter_in_Jahren, d.sexe, ${decal2}, d.y_2006)`} )
.rename({ 'y_2006': 'y_2006_d' })
return dt1991.join_full(dt1996)
.orderby('Alter_in_Jahren').filter('d.Alter_in_Jahren >= 0 && d.Alter_in_Jahren < 85')
.derive({ value: `d.y_1991_d === undefined ? d.y_2006_d :
d.y_2006_d === undefined ? d.y_1991_d :
((1 - ${t*t}) * d.y_1991_d + ${t*t} * d.y_2006_d)`})
} else {
t = 2 * (l - 0.5)
let decal = Math.round(15 * t), decal2 = 15 - decal
let dt2006 = data_pivot.select(0,1,2,'y_2006')
.derive({ y_2006: `op.decrease_with_aging(d.Alter_in_Jahren, d.sexe, ${decal}, d.y_2006)`} )
.derive({ Alter_in_Jahren: `d.Alter_in_Jahren + ${decal}`})
.rename({ 'y_2006': 'y_2006_d' })
let dt2021 = data_pivot.select(0,1,2,'y_2021')
.derive({ Alter_in_Jahren: `d.Alter_in_Jahren - ${decal2}`} )
.derive({ y_2021: `op.increase_with_getting_younger(d.Alter_in_Jahren, d.sexe, ${decal2}, d.y_2021)`} )
.rename({ 'y_2021': 'y_2021_d' })
return dt2006.join_full(dt2021)
.orderby('Alter_in_Jahren').filter('d.Alter_in_Jahren >= 0 && d.Alter_in_Jahren < 85')
.derive({ value: `d.y_2006_d === undefined ? d.y_2021_d :
d.y_2021_d === undefined ? d.y_2006_d :
((1 - ${t*t}) * d.y_2006_d + ${t*t} * d.y_2021_d)`})
}
}
Insert cell
Insert cell
Insert cell
interpol3(0).view()
Insert cell
Insert cell
Insert cell
//https://www.ined.fr/fr/tout-savoir-population/chiffres/france/mortalite-cause-deces/taux-mortalite-sexe-age/
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more