Public
Edited
Apr 17, 2023
1 fork
1 star
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import { vec2 } from "@esperanc/vec2-utils"
Insert cell
height = Math.trunc((width * 9) / 16)
Insert cell
Insert cell
function trajectory(ray, lenses, tMax = 1e4) {
let legs = [];
function nextLensHit(ray, tMin = 0) {
let hits = lenses
.map((lens) => [lens, lens.hit(ray, tMin)])
.filter(([l, h]) => h);
hits.sort(([r1, [t1, _]], [r2, [t2, __]]) => t1 - t2);
return hits;
}
let t = 0;
do {
let hits = nextLensHit(ray, t + 0.001);
if (hits.length == 0) {
legs.push([ray, tMax]);
break;
} else {
let [lens, [tHit, u]] = hits[0];
let { ray: newRay } = lens.refract(ray);
legs.push([ray, Math.min(tMax, tHit)]);
t = tHit;
ray = newRay;
}
} while (t < tMax);
return legs;
}
Insert cell
// Test code for trajectory
{
const { sourceX, sourceY, focalLen } = demoLensParms;
const lens1 = new Lens([width / 3, height / 2], [1, 0], focalLen, height / 2);
const lens2 = new Lens(
[(2 * width) / 3, height / 2],
[1, 0],
focalLen,
height / 2
);
const angle = 0;
const ray = new Ray([sourceX, sourceY], [Math.cos(angle), Math.sin(angle)]);
return trajectory(ray, [lens1, lens2]);
}
Insert cell
Insert cell
class Lens {
// center -> center point of the lens
// axis -> vector axis of the lens
// focusLen -> focus length of the lens
// size -> size of the lens
// mirror -> true if modeling a mirror rather than a lens
constructor(center, axis, focusLen, size, mirror = false) {
vec2.normalize(axis, axis);
Object.assign(this, { center, axis, focusLen, size });
this.reverse = mirror ? -1 : 1;
this.ray = new Ray(this.center, [-axis[1], axis[0]]); // Ray perpendicular to axis
}

// Returns the ray intersection parameters with the lens, or null if no hit
hit(incomingRay, tMin = 0) {
// Test for intersection with lens
const [t, u] = incomingRay.intersectRay(this.ray);
if (t < tMin || Math.abs(u) > this.size / 2) return false;
return [t, u];
}

// Returns the incoming ray refracted by the lens, parameterized accordingly.
// If the ray misses the lens, returns false
refract(incomingRay) {
let { axis, ray, focusLen, center, size, reverse } = this;

// Make sure to consider axis pointing to the other side of light source
if (vec2.dot(incomingRay.v, axis) * reverse < 0)
axis = vec2.scale([], axis, -1);

// Test for intersection with lens
const tu = this.hit(incomingRay);
if (!tu) return false;
const [t, u] = tu;
const p = incomingRay.at(t); // Intersection point

// Compute slope of incoming ray
const v1 = vec2.orthoProj([], incomingRay.v, axis);
const v2 = vec2.sub([], incomingRay.v, v1);
const sgn = Math.sign(vec2.dot(vec2.sub([], p, center), v2));
const m = vec2.len(v2) / vec2.len(v1);

// Compute slope of outgoing ray
const h = vec2.dist(p, center);
const sgn2 = Math.sign(vec2.dot(v2, ray.v));
const mprime = sgn2 * (m - (sgn * h) / focusLen);
const r = vec2.normalize([], vec2.scaleAndAdd([], axis, ray.v, mprime));

// Parameterize outgoing ray so that source is at same distance as incoming ray
const porig = new Ray(p, r).at(-t);

// Return the outgoing ray and the value of t at the intersection point
return { t, ray: new Ray(porig, r) };
}

// Draw on canvas context ctx
draw(ctx) {
let pts =
this.focusLen < 0
? [
...arrowHead(this.ray.translated(this.size / 2).rotated(Math.PI)),
...arrowHead(
this.ray
.scaled(-1)
.translated(this.size / 2)
.rotated(Math.PI)
)
]
: [
...arrowHead(this.ray.translated(this.size / 2)),
...arrowHead(this.ray.scaled(-1).translated(this.size / 2))
];
ctx.beginPath();
for (let p of pts) ctx.lineTo(...p);
ctx.fill();
ctx.stroke();
ctx.beginPath();
ctx.arc(
...vec2.scaleAndAdd([], this.center, this.axis, this.focusLen),
5,
0,
Math.PI * 2
);
ctx.fill();
}
}
Insert cell
//
// Returns the vertices of an arrowhead at the origin of ray with the given length and width.
//
function arrowHead(ray, length = 8, wid = 5) {
ray = ray.normalized();
return [
ray.p,
ray.rotated(Math.PI / 2).translated(wid / 2).p,
ray.translated(length).p,
ray.rotated(-Math.PI / 2).translated(wid / 2).p,
ray.p
];
}
Insert cell
// test for arrowHead
arrowHead(new Ray([100, 100], [10, 10]).rotated(Math.PI))
Insert cell
Insert cell
class Ray {
// Constructor from a point and a vector
constructor(p, v) {
Object.assign(this, { p, v });
}

// Point at p + t v
at(t) {
return vec2.scaleAndAdd([], this.p, this.v, t);
}

// Returns a copy of this ray with its direction vector normalized
normalized() {
return new Ray(this.p, vec2.normalize([], this.v));
}

// Returns a copy of this ray rotated by angle radians
rotated(angle) {
return new Ray(this.p, vec2.rotate([], this.v, [0, 0], angle));
}

// Returns a copy of this ray translated by its direction multiplied by delta
translated(delta) {
return new Ray(vec2.scaleAndAdd([], this.p, this.v, delta), this.v);
}

// Returns a copy of this ray with its vector scaled by delta
scaled(delta) {
return new Ray(this.p, vec2.scale([], this.v, delta));
}

// Tells whether the two ray-defined lines intersect
intersectsRay(other) {
const { p: p1, v: v1 } = this;
const { p: p2, v: v2 } = other;
const D = v1[0] * v2[1] - v1[1] * v2[0];
return D != 0;
}

// Returns the two parameters [t,u] for the ray intersection with other
// such that if this.intersectsRay(other), then
// this.at(t) == other.at(u) == intersection point
intersectRay(other) {
const { p: p1, v: v1 } = this;
const { p: p2, v: v2 } = other;
const D = v1[0] * v2[1] - v1[1] * v2[0];
const t = (v2[1] * (p2[0] - p1[0]) + p1[1] * v2[0] - p2[1] * v2[0]) / D;
const u = -(v1[1] * (p1[0] - p2[0]) + p2[1] * v1[0] - p1[1] * v1[0]) / D;
return [t, u];
}
}
Insert cell
Insert cell
new Ray([0, 0], [1, 1]).intersectRay(new Ray([1, 0], [-1, 1]))
Insert cell
new Ray([0, 0], [1, 1]).intersectRay(new Ray([1, 0], [1, 1]))
Insert cell
new Ray([0, 0], [1, 1]).intersectsRay(new Ray([1, 0], [-1, 1]))
Insert cell
new Ray([0, 0], [1, 1]).intersectsRay(new Ray([1, 0], [1, 1]))
Insert cell
new Ray([0, 0], [1, 1]).at(0.5)
Insert cell
Insert cell
function smoothControlPoints(pts, edgeRatio = 0.333) {
const n = pts.length;
const edges = pts.map((p, i) => vec2.sub([], pts[(i + 1) % n], p));
const lengths = edges.map((e) => vec2.length(e));
const normEdges = edges.map((e, i) => vec2.scale([], e, 1 / lengths[i]));
const tangents = normEdges.map((e, i) =>
vec2.normalize([], vec2.add([], e, normEdges[(i - 1 + n) % n]))
);
let cp = [];
for (let i = 0; i < n; i++) {
const inext = (i + 1) % n;
cp.push([
vec2.scaleAndAdd([], pts[i], tangents[i], lengths[i] * edgeRatio),
vec2.scaleAndAdd([], pts[inext], tangents[inext], -lengths[i] * edgeRatio)
]);
}
return cp;
}
Insert cell
Insert cell
Insert cell
{
const canvas = htl.html`<canvas width=600 height=600>`;
const ctx = canvas.getContext("2d");
const pts = [
[200, 200],
[200, 350],
[200, 250],
[200, 400],
[400, 400],
[400, 200]
];
const cpts = smoothControlPoints(pts, edgeRatio);
//return cpts;
for (let p of pts) {
ctx.beginPath();
ctx.arc(...p, 5, 0, Math.PI * 2);
ctx.fill();
}
ctx.fillStyle = "red";
for (let [p, q] of cpts) {
ctx.beginPath();
ctx.arc(...p, 5, 0, Math.PI * 2);
ctx.arc(...q, 5, 0, Math.PI * 2);
ctx.fill();
}
ctx.beginPath();
let n = pts.length;
ctx.moveTo(...pts[0]);
for (let i = 0; i < n; i++) {
let [cp1, cp2] = cpts[i];
ctx.bezierCurveTo(...cp1, ...cp2, ...pts[(i + 1) % n]);
}
ctx.stroke();
return canvas;
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more