Published
Edited
Nov 19, 2020
4 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
data = d3.csvParse(await FileAttachment("gsoy@1.csv").text(), d => ({
type: "Feature",
properties: d,
geometry: {
type: "Point",
coordinates: [+d.LONGITUDE, +d.LATITUDE]
}
})
)
Insert cell
average = d3.rollup(data, v => d3.mean(v, d => d.properties.EMNT), d => d.properties.STATION)
Insert cell
Insert cell
USDA_COLORSCALE = [
"#D6D3FE", // 1a
"#C3C2F3", // 1b
"#ACAADC", // 2a
"#EFAAEA", // 2b
"#E38EF5", // 3a
"#CD7DD9", // 3b
"#AB68FD", // 4a
"#5876F8", // 4b
"#72A0FD", // 5a
"#5BCBE7", // 5b
"#44BE45", // 6a
"#78C94D", // 6b
"#A8D864", // 7a
"#CFDB70", // 7b
"#EDD87F", // 8a
"#EECB53", // 8b
"#DDB346", // 9a
"#FAB678", // 9b
"#EE9B33", // 10a
"#ED770F", // 10b
"#E55618", // 11a
"#E68662", // 11b
"#D15E4C", //12a
"#B71221", //12b
"#982F1C", //13a
"#791703", //13b
]
Insert cell
Insert cell
zoneCodes = {
const codes = []
d3.range(1, 14).map(number => ['a', 'b'].map(letter => codes.push(number + letter)))
return codes
}
Insert cell
zoneFromTemp = {
const domain = d3.range(-48.3, 21.1, 2.77)
return d3.scaleThreshold()
.domain(domain)
.range(zoneCodes);
}
Insert cell
color = {
let domain = d3.range(-48.3, 21.1, 2.77)
return d3.scaleThreshold()
.domain(domain)
.range(USDA_COLORSCALE);

}
Insert cell
years = d3.range(2014, 2020).reverse()
Insert cell
geoVoroFeatures = d3.geoVoronoi().polygons(data.filter(d => d.properties.DATE == formObject.year)).features;
Insert cell
projection = d3.geoAlbers().scale(1300).translate([487.5, 305])
Insert cell
us = FileAttachment("states-albers-10m.json").json()
Insert cell
// with alaska and hawaii filtered out
usTopo = topojson.merge(us, us.objects.states.geometries.filter(d => d.id !== "02" && d.id !== "15"))
Insert cell
topojson = require("topojson-client@3")
Insert cell
d3 = require.alias({"d3-array": "d3@6", "d3-delaunay": "d3@6", "d3-geo": "d3@6"})("d3@6", "d3-geo-voronoi@1")
Insert cell
import {form} from "@mbostock/form-input"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more