Published
Edited
Jun 3, 2019
Insert cell
Insert cell
Insert cell
viewof timeButtonsNaive = {
const wtbar = html`<input type="range" id="wtbar" min="0" max = "10" value = "0" step="0.01">`;
const wtcut = html`<span>0</span>`;
wtbar.oninput = () => {
wtcut.innerHTML = wtbar.value;
d3.selectAll("line").attr("stroke-width", d => Math.abs(d.weight)>wtbar.value? Math.abs(d.weight)*2 : 0);
}
const view = html`
<div style="text-align: center; font-family: sans-serif">
Weight Cut-off = ${wtcut}
${wtbar}
</br>
</div>
`
return view;
}
Insert cell
md `## Graph Plot Setting`
Insert cell
height = 800
Insert cell
width =1000
Insert cell
maxLayer =d3.max(data.nodes, d => d.LayerNum)
Insert cell
maxwt = d3.max(data.links, d => Math.abs(d.weight))
Insert cell
maxnode = d3.max(data.nodes, d => Math.abs(d.value))
Insert cell
color = {
const scale = d3.scaleOrdinal(d3.schemeCategory10);
return d => scale(d.LayerNum);
}
Insert cell
drag = simulation => {
function dragstarted(d) {
if (!d3.event.active) simulation.alphaTarget(3).restart();
d.fx = d.x;
d.fy = d.y;
}
function dragged(d) {
d.fx = d3.event.x;
d.fy = d3.event.y;
}
function dragended(d) {
if (!d3.event.active) simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
}
return d3.drag()
.on("start", dragstarted)
.on("drag", dragged)
.on("end", dragended);
}
Insert cell
d3 = require("d3@5")
Insert cell
import {number} from "@jashkenas/inputs"
Insert cell
import {slider} from "@jashkenas/inputs"
Insert cell
viewof phi0= slider({
min: 0,
max: 100,
step: 1,
title: "phi0",
description: "input for phi0"
})
Insert cell
md `## Graph Generation`
Insert cell
NN = d3.json("https://raw.githubusercontent.com/cse512-19s/FP-Visualizing-neural-network-architecture/master/docs/FeedforwardNN.json?token=AHF5OJCHONQA7OTERXNXTCK47VYOQ")
Insert cell
function ComputeLayerValues(input){
var nodes = [];
var links = [];
for (let i=0; i<NN['weights'][0].length; i++){
var node = {'id': i, 'LayerNum': 0, 'NodeNum': i, 'value': input[i]}
nodes.push(node)
}
var currentLayer = input
for (let l=0; l<NN['weights'].length; l++){
var weight = NN['weights'][l]
var bias = NN['bias'][l]
var nextLayer = bias
for (let i=0; i<weight.length; i++){
for (let j=0; j<weight[i].length; j++){
nextLayer[j] += weight[i][j]*currentLayer[i]
var link = {'source': l*100+i, 'target': (l+1)*100+j, 'weight': weight[i][j]}
links.push(link)
}
}
for (let k=0; k<nextLayer.length; k++){
if (l !== NN['weights'].length-1){
nextLayer[k] = Math.tanh(nextLayer[k]) // apply activation function
}
var node = {'id': (l+1)*100+k, 'LayerNum': l+1, 'NodeNum': k, 'value': nextLayer[k]}
nodes.push(node)
}
currentLayer = nextLayer
}
return {"nodes": nodes, "links": links};
}
Insert cell
input = [1,1,1,1,1,1,1,1,1,1]
Insert cell
data = ComputeLayerValues(input)
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more