Published
Edited
Dec 18, 2019
1 star
Insert cell
Insert cell
Insert cell
chart = {
const svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

svg.append("g").call(xAxis);

svg.append("g").call(yAxis);

const path = svg
.append("g")
.attr("fill", "none")
.attr("stroke", "steelblue")
.attr("stroke-width", 2.5)
.attr("stroke-linejoin", "round")
.attr("stroke-linecap", "round")
.selectAll("path")
.data(data.series)
.join("path")
.style("mix-blend-mode", "multiply")
.attr("d", d => line(d.values));

svg.call(hover, path);

return svg.node();
}
Insert cell
raw = d3.csvParse(
await FileAttachment(
"Annual Returns on Stock, T.Bonds and T.Bills_ 1928 - Current - Sheet1.csv"
).text()
)
Insert cell
function parseMoney(d) {
return +d.substr(1).replace(/,/g, '');
}
Insert cell
formatMoney = {
const fmt = d3.format(",");
return d => "$" + fmt(Math.round(d));
}
Insert cell
function pluckSeries(from, name) {
return { name, values: raw.map(d => parseMoney(d[from])) };
}
Insert cell
data = ({
y: "Compounded value of $100, invested in 1928",
series: [
pluckSeries("Stocks", "Stocks"),
pluckSeries("T.Bills", "Treasury Bills (3 month)"),
pluckSeries("T.Bonds", "Treasury Bonds (10 year)")
],
dates: raw.map(d => new Date(d.Year + "-12-31"))
})
Insert cell
function hover(svg, path) {
svg.style("position", "relative");

if ("ontouchstart" in document)
svg
.style("-webkit-tap-highlight-color", "transparent")
.on("touchmove", moved)
.on("touchstart", entered)
.on("touchend", left);
else
svg
.on("mousemove", moved)
.on("mouseenter", entered)
.on("mouseleave", left);

const dot = svg.append("g").attr("display", "none");

dot.append("circle").attr("r", 2.5);

dot
.append("text")
.style("font", "bold 12px sans-serif")
.style("text-shadow", "0 0 3px white")
.attr("fill", "#000")
.attr("text-anchor", "middle")
.attr("y", -8);

function moved() {
d3.event.preventDefault();
const ym = y.invert(d3.event.layerY);
const xm = x.invert(d3.event.layerX);
const i1 = d3.bisectLeft(data.dates, xm, 1);
const i0 = i1 - 1;
const i = xm - data.dates[i0] > data.dates[i1] - xm ? i1 : i0;
const s = data.series.reduce((a, b) =>
Math.abs(a.values[i] - ym) < Math.abs(b.values[i] - ym) ? a : b
);
path
.attr("stroke", d => (d === s ? null : "#ddd"))
.filter(d => d === s)
.raise();
dot.attr("transform", `translate(${x(data.dates[i])},${y(s.values[i])})`);
dot.select("text").text(`${s.name}: ${formatMoney(s.values[i])}`);
}

function entered() {
path.style("mix-blend-mode", null).attr("stroke", "#ddd");
dot.attr("display", null);
}

function left() {
path.style("mix-blend-mode", "multiply").attr("stroke", null);
dot.attr("display", "none");
}
}
Insert cell
height = 600
Insert cell
margin = ({ top: 20, right: 80, bottom: 30, left: 50 })
Insert cell
x = d3.scaleUtc()
.domain(d3.extent(data.dates))
.range([margin.left, width - margin.right])
Insert cell
y = (scale === "linear"
? d3
.scaleLinear()
.domain([0, d3.max(data.series, d => d3.max(d.values))])
.nice()
: d3
.scaleLog()
.base(2)
.domain([50, d3.max(data.series, d => d3.max(d.values))])
).range([height - margin.bottom, margin.top])
Insert cell
xAxis = g => g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x).ticks(width / 80).tickSizeOuter(0))
Insert cell
yAxis = g =>
g
.attr("transform", `translate(${margin.left},0)`)
.call(
d3
.axisLeft(y)
.tickValues(
scale === "log" ? [50, 100, 1000, 10000, 100000, 400000] : undefined
)
.tickFormat(formatMoney)
)
.call(g => g.select(".domain").remove())
.call(g =>
g
.select(".tick:last-of-type text")
.clone()
.attr("x", 3)
.attr("text-anchor", "start")
.attr("font-weight", "bold")
.style("font-size", "12px")
.text(data.y)
)
Insert cell
line = d3.line()
.defined(d => !isNaN(d))
.x((d, i) => x(data.dates[i]))
.y(d => y(d))
Insert cell
d3 = require("d3@5")
Insert cell
import { radio } from "@jashkenas/inputs"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more