Published
Edited
May 21, 2021
1 fork
Insert cell
Insert cell
md`## 1 Maternal Mortality Rate (1/100,000) in China from 2010 to 2018
### 1.1 An Overview: Urban-Rural Gap`
Insert cell
{
const urban_rural1 = vl.markArea({opacity: 0.5})
.data(mortality_data_china)
.encode(
vl.x().fieldT("Year").timeUnit("year").title("2010-2018"),
vl.y().mean("Maternal").stack(null).title("Maternal Mortality Rate"),
vl.color().fieldN("Urban-Rural").scale({scheme: "goldorange"}),
)

const urban_rural2 = vl.markLine({strokeWidth: 3, interpolate: 'monotone'})
.data(mortality_data_china)
.encode(
vl.x().fieldT("Year").timeUnit("year"),
vl.y().fieldQ('Maternal'),
vl.color().fieldN('Urban-Rural').legend(null),
vl.tooltip().fieldN('Urban-Rural')
)
.width(700)
.height(500)

return vl.layer(urban_rural1, urban_rural2).render();
}
Insert cell
Insert cell
Insert cell
Insert cell
vl.markCircle()
.data(mortality_data_provincial)
.transform(vl.filter("datum.Year == '" + selectYear + "'"))
.encode(vl.x().fieldQ("City").title("Urban Maternal Mortality Rate"),
vl.y().fieldQ("County").title("Rural Maternal Mortality Rate"),
vl.color().fieldN("Total").scale({scheme: "lightgreyred"}).title("Total Maternal Mortality Rate"),
vl.size().fieldN("Total"),
vl.tooltip().fieldN("Provincial"))
.width(700)
.height(500)
.render()
Insert cell
md`### 1.3 Urban-Rural Gap at Provincial Level`
Insert cell
Insert cell
vl.markBar()
.data(mortality_data_province)
.transform(vl.filter("datum.Location == '" + selectLocation + "'"))
.encode(vl.y().fieldN("Urban_Rural"),
vl.x().fieldO("Year"),
vl.color().mean(vl.repeat("column")).scale({scheme: "lightgreyred"}).title("Maternal Mortality Rate"),
vl.tooltip().mean(vl.repeat("column")))
.width(400)
.height(120)
.repeat({column: ["Mortality"]})
.resolve({scale: {color: 'independent'}})

.render()

Insert cell
Insert cell
{
const totalrate = vl.markBar()
.data(maternal_data_china)
.encode(vl.y().fieldQ("Value").title("Mortality Rate"),
vl.x().fieldN("Year"),
vl.color().fieldN("Causes").scale({scheme: "inferno"}).title("Major Causes"),
vl.tooltip().fieldQ("Value"))
.width(360)
.height(360)
return vl.layer(totalrate)
.facet({column: vl.field("Location")})
.data(maternal_data_china)
.render()
}
Insert cell
Insert cell
vl.markBar()
.data(mortality_data_2019)
.width(580)
.height(400)
.encode(
vl.y().fieldN("Causes").title("Major Causes in urban/rural area"),
vl.x().fieldQ("Value").title("% of Total Maternal Mortality"),
vl.color().fieldQ("Value").scale({scheme: "lightorange"}).title("% of Total Maternal Mortality"),
vl.tooltip().fieldQ("Value"))
.render()
Insert cell
Insert cell
countries_url = "https://gitee.com/riverscn/china-geojson/raw/master/china.json"
Insert cell
d3 = require("d3-dsv@1", "d3@5")
Insert cell
md`## mortality_file_china`
Insert cell
import {vl} from '@vega/vega-lite-api'
Insert cell
mortality_file_china = FileAttachment("mortality_china2@2.csv")
Insert cell
mortality_text_china = mortality_file_china.text()
Insert cell
mortality_data_china = d3.csvParse(mortality_text_china, d3.autoType)
Insert cell
import {printTable} from '@uwdata/data-utilities'
Insert cell
printTable(mortality_data_china.slice(0, 10))
Insert cell
md`## mortality_file_provincial`
Insert cell
mortality_file_provincial = FileAttachment("mortality_pro.csv")
Insert cell
mortality_text_provincial = mortality_file_provincial.text()
Insert cell
mortality_data_provincial = d3.csvParse(mortality_text_provincial, d3.autoType)
Insert cell
printTable(mortality_data_provincial.slice(0, 10))
Insert cell
md`## mortality_file_province`
Insert cell
mortality_file_province = FileAttachment("mortality_province2.csv")
Insert cell
mortality_text_province = mortality_file_province.text()
Insert cell
mortality_data_province = d3.csvParse(mortality_text_province, d3.autoType)
Insert cell
printTable(mortality_data_province.slice(0, 10))
Insert cell
md`## maternal_file_china`
Insert cell
maternal_file_china = FileAttachment("maternal_total2@2.csv")
Insert cell
maternal_text_china = maternal_file_china.text()
Insert cell
maternal_data_china = d3.csvParse(maternal_text_china, d3.autoType)
Insert cell
printTable(maternal_data_china.slice(0, 10))
Insert cell
Insert cell
mortality_file_2019 = FileAttachment("mortality_2019a@1.csv")
Insert cell
mortality_text_2019 = mortality_file_2019.text()
Insert cell
mortality_data_2019 = d3.csvParse(mortality_text_2019, d3.autoType)
Insert cell
printTable(mortality_data_2019.slice(0, 10))
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more