Published
Edited
Mar 11, 2019
Insert cell
Insert cell
d3 = require("d3-fetch@1")
Insert cell
vegalite = require("@observablehq/vega-lite@0.1")
Insert cell
z = require('https://bundle.run/zebras@0.0.11')
Insert cell
Insert cell
[ {"data": 5}, {"data": 3}, {"data": 8}, {"data": 1} ]
Insert cell
Insert cell
aruba = [
{time: "1962-01-01", value: -4323},
{time: "1967-01-01", value: -4275},
{time: "1972-01-01", value: -3537},
{time: "1977-01-01", value: -5470},
{time: "1982-01-01", value: -1921},
{time: "1987-01-01", value: -5194},
{time: "1992-01-01", value: 14218},
{time: "1997-01-01", value: 6926},
{time: "2002-01-01", value: 6263},
{time: "2007-01-01", value: -441},
{time: "2012-01-01", value: 1253},
{time: "2017-01-01", value: 1004},
]
Insert cell
Insert cell
vegalite({
data: {values: aruba},
mark: "point",
encoding: {
x: {field: "value", type: "quantitative"}
}
})
Insert cell
Insert cell
vegalite({
data: {values: aruba},
mark: "point",
encoding: {
x: {timeUnit: "year", field: "time", type: "temporal"}, // identify the x field, in our case is year;
y: {field: "value", type: "quantitative"} // identify the y field, in our case is the migration amount for that year;
}
})
Insert cell
Insert cell
vegalite({
data: {values: aruba},
mark: "line",
encoding: {
x: {timeUnit: "year", field: "time", type: "temporal"},
y: {field: "value", type: "quantitative"},
}
})
Insert cell
Insert cell
import {migrationParsed} from "@cesandoval/week-3-data-management-with-zebras"
Insert cell
descending_2017 = z.sortByCol('2017', 'des', migrationParsed)
Insert cell
top10_2017 = descending_2017.slice(0,10)
Insert cell
vegalite({
data: {values: top10_2017},
mark: "bar",
encoding: {
x: {bin: false, field: "Country Name", type: "nominal"},
y: {field: "2017", type: "quantitative"}
}
})
Insert cell
Insert cell
vegalite({
data: {values: top10_2017},
mark: "bar",
encoding: {
x: {bin: false, field: "Country Name", type: "nominal", sort:'*'},
y: {field: "2017", type: "quantitative"}
}
})
Insert cell
Insert cell
australia = {
let australia = []
for (const key of Object.keys(descending_2017[0])) {
if (!isNaN(descending_2017[0][key])){
australia.push({year: key, value: descending_2017[0][key]})
}
}
return australia
}
Insert cell
vegalite({
data: {values: australia},
mark: "point",
encoding: {
x: {timeUnit: "year", field: "year", type: "temporal"},
y: {field: "value", type: "quantitative"}
}
})
Insert cell
Insert cell
Insert cell
vegalite({
title: "Migration Change of Aruba", // insert our title;
data: {values: aruba},
mark: "line",
encoding: {
x: {timeUnit: "year", field: "time", type: "temporal"},
y: {field: "value", type: "quantitative"}
}
})
Insert cell
Insert cell
vegalite({
title: "Migration Change of Aruba",
data: {values: aruba},
mark: "line",
encoding: {
x: {timeUnit: "year", field: "time", type: "temporal",
"axis": {"title": "Year (from 1962 to 2017)",
"offset": 10}}, // this allows us to change the property of axis
y: {field: "value", type: "quantitative",
"axis": {"title": "Number of People",
"offset": 10}} // this allows us to change the property of axis
}
})
Insert cell
Insert cell
top3 = {
let array = []
for (let i in descending_2017.slice(0,3)) {
let currCountry = descending_2017.slice(0,3)[i]
for (const key of Object.keys(currCountry)) {
console.log(currCountry)
if (!isNaN(currCountry[key])){
array.push({year: key, value: currCountry[key], Country: currCountry['Country Name']})
}
}
}

return array
}
Insert cell
vegalite({
title: {
text : "Top 3 Countries with Largest Migration"
},
data: {values: top3},
mark: "line",
encoding: {
x: {
timeUnit: "year",
field: "year",
type: "temporal",
axis: {"title": "Time(year)"}
},
"y": {
field: "value",
type: "quantitative",
axis: {"title": "Migration"}
},
"row": {
field: "Country",
type: "nominal"} // try to modify the "row" argument as "column" and see what's happening?
}
})
Insert cell
Insert cell
vegalite({
title: "Top 10 Migration Countries",
data: {values: top10_2017},
mark: "bar",
encoding: {
x: {bin: false, field: "Country Name", type: "nominal", sort:"*"},// sort argument allows you to reorganize the chart.
y: {field: "2017", type: "quantitative"},
color: {field: "Country Name", type: "nominal"}
}
})
Insert cell
Insert cell
embed = require("vega-embed@3")
Insert cell
Insert cell
viewof view = embed({
title: "Top 10 Migration Countries",
data: {values: top10_2017},
mark: "bar",
encoding: {
x: {bin: false, field: "Country Name", type: "nominal", sort:"*"},// sort argument allows you to reorganize the chart.
y: {field: "2017", type: "quantitative"},
color: {field: "Country Name", type: "nominal"}
}
})
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more