Public
Edited
Mar 26
10 stars
Also listed in…
Eurostat-map.js
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
mapConfig = {
if (dataset == "life-expectancy") {
return {
config: {
title: `Life expectancy`,
thresholds: [70, 72, 74, 76, 78, 80, 82, 84, 86],
colors: [
"#FFEB99",
"#E1EAA8",
"#BEE6B5",
"#8DD6B9",
"#63C8BD",
"#4CBBC2",
"#3792B6",
"#1B5A9E",
"#163C84",
"#17256B"
],
legendTitle: "Years old",
datasetCode: "demo_r_mlifexp",
unitText: "years",
mapHeight: 350
},
maps: [
{
id: "map1",
title: "Male",
filters: { time: "2023", age: "Y_LT1", sex: "M" }
},
{
id: "map2",
title: "Female",
filters: { time: "2023", age: "Y_LT1", sex: "F" }
}
]
};
}
if (dataset == "median-age") {
return {
maps: [
{
id: "map4",
title: "2015",
filters: { time: "2015", indic_de: "MEDAGEPOP" }
},
{
id: "map5",
title: "2016",
filters: { time: "2016", indic_de: "MEDAGEPOP" }
},
{
id: "map6",
title: "2017",
filters: { time: "2017", indic_de: "MEDAGEPOP" }
},
{
id: "map7",
title: "2018",
filters: { time: "2018", indic_de: "MEDAGEPOP" }
},
{
id: "map8",
title: "2019",
filters: { time: "2019", indic_de: "MEDAGEPOP" }
},
{
id: "map9",
title: "2020",
filters: { time: "2020", indic_de: "MEDAGEPOP" }
},
{
id: "map10",
title: "2021",
filters: { time: "2021", indic_de: "MEDAGEPOP" }
},
{
id: "map11",
title: "2022",
filters: { time: "2022", indic_de: "MEDAGEPOP" }
},
{
id: "map12",
title: "2023",
filters: { time: "2023", indic_de: "MEDAGEPOP" }
},
{
id: "map13",
title: "2024",
filters: { time: "2024", indic_de: "MEDAGEPOP" }
}
],
config: {
title: `Median age`,
thresholds: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44],
colors: [
"#FFEB99",
"#E4EAA7",
"#C7E9B4",
"#9DDBB8",
"#6BCDBB",
"#58C1C0",
"#41B6C4",
"#3181AF",
"#104F99",
"#173A82",
"#17256B"
],
// colors: [
// "#F7E8EF",
// "#EFD0DE",
// "#E7B9CE",
// "#DF96B8",
// "#D78AAE",
// "#D472A0",
// "#C75B8D",
// "#BF447D",
// "#B72C6C",
// "#AF155C",
// "#7F0A45"
// ],
legendTitle: "Years old",
datasetCode: "demo_pjanind",
unitText: "years",
mapHeight: 250
}
};
} else if (dataset == "population") {
return {
maps: [
{
id: "map1",
title: "2012",
filters: { time: "2012", indic_de: "GROWRT" }
},
{
id: "map2",
title: "2013",
filters: { time: "2013", indic_de: "GROWRT" }
},
{
id: "map3",
title: "2014",
filters: { time: "2014", indic_de: "GROWRT" }
},
{
id: "map4",
title: "2015",
filters: { time: "2015", indic_de: "GROWRT" }
},
{
id: "map5",
title: "2016",
filters: { time: "2016", indic_de: "GROWRT" }
},
{
id: "map6",
title: "2017",
filters: { time: "2017", indic_de: "GROWRT" }
},
{
id: "map7",
title: "2018",
filters: { time: "2018", indic_de: "GROWRT" }
},
{
id: "map8",
title: "2019",
filters: { time: "2019", indic_de: "GROWRT" }
},
{
id: "map9",
title: "2020",
filters: { time: "2020", indic_de: "GROWRT" }
},
{
id: "map10",
title: "2021",
filters: { time: "2021", indic_de: "GROWRT" }
},
{
id: "map11",
title: "2022",
filters: { time: "2022", indic_de: "GROWRT" }
},
{
id: "map12",
title: "2023",
filters: { time: "2023", indic_de: "GROWRT" }
},
{
id: "map13",
title: "2024",
filters: { time: "2024", indic_de: "GROWRT" }
}
],
config: {
title: `Population change in Europe since 2012
<span style="color:#208486; font-weight:bold;">*Increase*</span> vs <span style="color:#997a00; font-weight:bold;">*Decrease*</span>`,
thresholds: [-10, -6, -4, -2, 0, 2, 4, 6, 10, 15],
colors: [
"#997a00",
"#be9812",
"#e5b822",
"#f3d163",
"#feea98",
"#e0ebab",
"#beebbe",
"#a0dbbd",
"#7fccbb",
"#54a7a0",
"#208486"
],
legendTitle: "Population change per 1000 inhabitants",
legendTickFormat: "+",
datasetCode: "demo_r_gind3",
unitText: "‰",
mapHeight: 240
}
};
} else if (dataset == "death") {
return {
maps: [
{
id: "map1",
title: "Circulatory",
filters: {
sex: "T",
unit: "RT",
time: "2016",
age: "TOTAL",
icd10: "I"
}
},
{
id: "map2",
title: "Cancer",
filters: {
sex: "T",
unit: "RT",
time: "2016",
age: "TOTAL",
icd10: "C"
}
},
{
id: "map3",
title: "Respiratory",
filters: {
sex: "T",
unit: "RT",
time: "2016",
age: "TOTAL",
icd10: "J"
}
}
// {
// id: "map4",
// title: "Other",
// filters: {
// sex: "T",
// unit: "RT",
// time: 2016,
// age: "TOTAL",
// icd10:
// "A_B&icd10=A_B_OTH&icd10=D00-D48&icd10=D50-D89&icd10=E&icd10=E_OTH&icd10=F&icd10=TOXICO&icd10=F_OTH&icd10=G_H&icd10=G_H_OTH&icd10=K&icd10=L&icd10=M&icd10=N&icd10=N_OTH&icd10=O&icd10=P&icd10=Q&icd10=R&icd10=U071&icd10=U072&icd10=U_COV19_OTH&icd10=V01-Y89&icd10=ACC&icd10=V_Y85&icd10=ACC_OTH&icd10=W00-W19&icd10=W65-W74&icd10=X60-X84_Y870&icd10=X40-X49&icd10=X85-Y09_Y871&icd10=Y10-Y34_Y872&icd10=V01-Y89_OTH"
// }
// }
],
config: {
title: "Causes of death",
thresholds: [
30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 500, 700, 900, 1200
],
colors: [
"#ffffd9",
"#f4fbc3",
"#e5f5b6",
"#d0ecb4",
"#b0e0b6",
"#8ad2ba",
"#65c3bf",
"#45b4c2",
"#2ea0c1",
"#2288ba",
"#216daf",
"#2353a2",
"#213c93",
"#182b79"
],
legendTitle: "Deaths per 100 000 inhabitants",
datasetCode: "hlth_cd_asdr2",
legendTickFormat: "",
unitText: "deaths per 100 000 inhabitants",
mapHeight: 250
}
};
} else if (dataset == "employment") {
return {
maps: [
{
id: "map1",
title: "Industry",
data: await FileAttachment("4A@1.csv")
.csv()
.then((res) =>
Object.fromEntries(res.map((row) => [row.NUTS, row.Value]))
)
},
{
id: "map2",
title: "Construction",
data: await FileAttachment("4B@1.csv")
.csv()
.then((res) =>
Object.fromEntries(res.map((row) => [row.NUTS, row.Value]))
)
},
{
id: "map3",
title: "Distributive trade",
data: await FileAttachment("4C@1.csv")
.csv()
.then((res) =>
Object.fromEntries(res.map((row) => [row.NUTS, row.Value]))
)
}
// {
// id: "map4",
// title: "Other market services",
// data: await FileAttachment("4D@1.csv")
// .csv()
// .then((res) =>
// Object.fromEntries(res.map((row) => [row.NUTS, row.Value]))
// )
// }
],
config: {
title: "Business economy employment",
thresholds: [5, 10, 15, 20, 25, 30, 35, 40],
colors: getColorsFromInterpolator(8),
legendTitle: "%, share of business economy employment",
legendTickFormat: "",
unitText: "%",
mapHeight: 250
}
};
} else if (dataset == "employment2") {
return {
maps: [
{
id: "map1",
title: "Retail trade",
data: await FileAttachment("5A.csv")
.csv()
.then((res) =>
Object.fromEntries(res.map((row) => [row.NUTS, row.Value]))
)
},
{
id: "map2",
title: "Administrative and support services",
data: await FileAttachment("5B.csv")
.csv()
.then((res) =>
Object.fromEntries(res.map((row) => [row.NUTS, row.Value]))
)
},
{
id: "map3",
title: "Education",
data: await FileAttachment("5C.csv")
.csv()
.then((res) =>
Object.fromEntries(res.map((row) => [row.NUTS, row.Value]))
)
},
{
id: "map4",
title: "Human health and social work",
data: await FileAttachment("5D.csv")
.csv()
.then((res) =>
Object.fromEntries(res.map((row) => [row.NUTS, row.Value]))
)
}
],
config: {
title: "Selected services employment",
thresholds: [0.5, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 20],
colors: getColorsFromInterpolator(15),
legendTitle: "%, share of business economy employment",
legendTickFormat: "",
unitText: "%",
mapHeight: 250
}
};
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more