Published
Edited
Aug 19, 2021
Fork of Untitled
Insert cell
# Clean covid dataset

source: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
Insert cell
import {
tidy,
groupBy,
summarize,
tally,
count,
n,
filter,
complete,
select,
pivotLonger,
negate,
sum,
mutate,
mutateWithSummary,
lag,
rename,
max,
sliceMax,
map,
} from '@pbeshai/tidyjs'
Insert cell
covid_data = FileAttachment("time_series_covid19_confirmed_global.csv").csv()
Insert cell
Object.keys(covid_data[0]).slice(0,4)
Insert cell
time_keys = Object.keys(covid_data[0]).slice(4)
Insert cell
formatTime = d3.timeFormat('%Y-%m-%d')
Insert cell
tidy_data = tidy(
covid_data,
pivotLonger({
cols: time_keys,
namesTo: 'date',
valuesTo: 'cases',
}),
rename({'Country/Region': 'country'}),
map(d => ({...d, date: formatTime(Date.parse(d.date))})),
groupBy(['country', 'date'], [
summarize({
cases: sum('cases'),
})
]),
mutateWithSummary({
prev_cases: lag('cases', { default: 0 }),
}),
mutate({
new_daily: (d) => d.cases - d.prev_cases,
})
)
Insert cell
tidy_data2 = tidy(
covid_data,
pivotLonger({
cols: time_keys,
namesTo: 'date',
valuesTo: 'cases',
}),
rename({'Country/Region': 'country'}),
map(d => ({...d, date: formatTime(Date.parse(d.date))})),
groupBy(['country', 'date'], [
summarize({
cases: sum('cases'),
})
]),
mutateWithSummary({
prev_cases: lag('cases', { default: 0 }),
}),
mutate({
new_daily: (d) => d.cases - d.prev_cases < 0 ? 0 : d.cases - d.prev_cases,
})
)
Insert cell
country_list = tidy(
tidy_data,
groupBy(['country'], [
summarize({
max_cases: max('cases'),
})
]),
sliceMax(10, 'max_cases'),
map(d => d.country)
)
Insert cell
tidier_data = tidy(
tidy_data2,
filter(d => country_list.includes(d.country)),
select(negate('prev_cases'))
)
Insert cell
Inputs.table(tidier_data)
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more