Published
Edited
Mar 8, 2021
Insert cell
md`# Mapping it out: Choropleth Mapping
Percent Hispanic in Minnesota Counties, Source: [Census 2010]`
Insert cell
d3 = require("d3@5")
Insert cell
import {legend} from "@d3/color-legend"
Insert cell
simple = require("simple-statistics@7.0.7/dist/simple-statistics.min.js")
Insert cell
format = d => `${d}%`
Insert cell
topojson = require("topojson-client@3")
Insert cell
minnesota = FileAttachment("mn_state_WGS84.json").json()
Insert cell
MNcounties = topojson.feature(minnesota, minnesota.objects.mn_state_WGS84)
Insert cell
csv_data = d3.csvParse(await FileAttachment("Census2010_MN.csv").text(),({FIPS, Hispanic, TotalPop}) => [FIPS, [+Hispanic, +Hispanic/+TotalPop*100]])
Insert cell
data = Object.assign(new Map(csv_data), {title: "Percent Hispanic by County"})
Insert cell
hispanicPCT = Array.from(csv_data.values(), d => d[1][1])
Insert cell
ColorScheme = [d3.color("#ffffb2"), d3.color("#fecc5c"), d3.color("#fd8d3c"), d3.color("#e31a1c")]
Insert cell
naturalbreaks = simple.ckmeans(hispanicPCT, ColorScheme.length).map(v => v.pop())
Insert cell
//more information on sequential scales: https://observablehq.com/@d3/sequential-scales
// color = d3.scaleSequentialQuantile([...data.values()], d3.interpolateBlues)

// color = d3.scaleQuantile()
// .domain(med_age)
// .range()

color = d3.scaleThreshold()
.domain(0, 5, 10, 15)
.range(ColorScheme)
Insert cell
width = 600
Insert cell
height = 975
Insert cell
margin = 20
Insert cell
//Rotate the map sets the longitude of origin for our UTM Zone 15N projection.
projection = d3.geoTransverseMercator().rotate([94,0]).fitExtent([[80, 80], [width, height]], MNcounties);
//d3 reference for projections: https://github.com/d3/d3-geo/blob/master/README.md

//use the following url for specific projection settings: https://github.com/veltman/d3-stateplane
//Use this code to set up the map projection (if different than geographic projection)

//projection = d3.geoAlbers().fitExtent([[margin, margin], [width - margin, height - margin]], counties)

//projection = d3.geoMercator().fitExtent([[margin, margin], [width - margin, height - margin]], counties)
Insert cell
//Using a path generator to project geometry onto the map
path = d3.geoPath().projection(projection);
Insert cell
choropleth = {
const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height]);

svg.append("g")
.attr("transform", "translate(360,20)")
.append(() =>
legend({
color: color,
title: data.title,
width: 260,
tickFormat: ".1%"
})
);

svg.append("g")
.selectAll("path")
.data(MNcounties.features)
.join("path")
.attr("stroke", "white")
.attr("stroke-linejoin", "round")
.attr("stroke-width", 1)
// .attr("fill", function(d){
// console.log(color(data.get(d.properties.FIPS)[0]))
// return color(data.get(d.properties.FIPS)[0]);
// })
.attr("fill", d => color(data.get(d.properties.FIPS)[0])
.attr("d", path)
.append("title")
.text(d => "Percent Hispanic: " + data.get(d.properties.FIPS));

return svg.node();
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more