function rectCollide() {
let size = constant([0, 0]);
let nodes,sizes,masses;
let strength = 1;
let iterations = 1;
let nodeCenterX;
let nodeMass;
let nodeCenterY;
function force() {
let node;
let i = -1;
while (++i < iterations){iterate();}
function iterate(){
let quadtree = d3.quadtree(nodes, xCenter, yCenter);
let j = -1
while (++j < nodes.length){
node = nodes[j];
nodeMass = masses[j];
nodeCenterX = xCenter(node);
nodeCenterY = yCenter(node);
quadtree.visit(collisionDetection);
}
}
function collisionDetection(quad, x0, y0, x1, y1) {
let updated = false;
let data = quad.data;
if(data){
if (data.index > node.index) {
let xSize = (node.width + data.width) / 2;
let ySize = (node.height + data.height) / 2;
let dataCenterX = xCenter(data);
let dataCenterY = yCenter(data);
let dx = nodeCenterX - dataCenterX;
let dy = nodeCenterY - dataCenterY;
let absX = Math.abs(dx);
let absY = Math.abs(dy);
let xDiff = absX - xSize;
let yDiff = absY - ySize;
if(xDiff < 0 && yDiff < 0){
//collision has occurred
//overlap x
let sx = xSize - absX;
//overlap y
let sy = ySize - absY;
if(sx < sy){
//x displacement smaller than y
if(sx > 0){
sy = 0;
}
}else{
//y displacement smaller than x
if(sy > 0){
sx = 0;
}
}
if (dx < 0){
//change sign of sx - has collided on the right(?)
sx = -sx;
}
if(dy < 0){
//change sign of sy -
sy = -sy;
}
//magnitude of vector
let distance = Math.sqrt(sx*sx + sy*sy);
//direction vector/unit vector - normalize each component by the magnitude to get the direction
let vCollisionNorm = {x: sx / distance, y: sy / distance};
let vRelativeVelocity = {x: data.vx - node.vx, y: data.vy - node.vy};
//dot product of relative velocity and collision normal
let speed = vRelativeVelocity.x * vCollisionNorm.x + vRelativeVelocity.y * vCollisionNorm.y;
if (speed < 0){
//negative speed = rectangles moving away
}else{
//takes into account mass
var collisionImpulse = 2*speed / (masses[data.index] + masses[node.index]);
if(Math.abs(xDiff) < Math.abs(yDiff)){
//x overlap is less
data.vx -= (collisionImpulse * masses[node.index] * vCollisionNorm.x);
node.vx += (collisionImpulse * masses[data.index] * vCollisionNorm.x);
}else{
//y overlap is less
data.vy -= (collisionImpulse * masses[node.index] * vCollisionNorm.y);
node.vy += (collisionImpulse * masses[data.index] * vCollisionNorm.y);
}
updated = true;
}
}
}
}
return updated
}
}//end force
function xCenter(d) { return d.x + d.vx + sizes[d.index][0] / 2 }
function yCenter(d) { return d.y + d.vy + sizes[d.index][1] / 2 }
force.initialize = function (_) {
sizes = (nodes = _).map(d => [d.width,d.height])
masses = sizes.map(d => d[0] * d[1])
}
force.size = function (_) {
return (arguments.length
? (size = typeof _ === 'function' ? _ : constant(_), force)
: size)
}
force.strength = function (_) {
return (arguments.length ? (strength = +_, force) : strength)
}
force.iterations = function (_) {
return (arguments.length ? (iterations = +_, force) : iterations)
}
return force
}//end rectCollide