Published
Edited
Jun 15, 2021
1 star
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// Initial distribution
// You can change this and the results below should change along with it,
// as should the picture at the top.
g = r => 1 - r ** 2
Insert cell
Insert cell
// The eigenfunction. Note that that the Bessel function j0 is
// imported below, j0_zero(n) represents the nth zero and that
// sqrt(lambda_n) = j0_zero(n).
function R(n, x) {
return j0(x * j0_zero(n));
}
Insert cell
Insert cell
// The norms of the eigenfunctions
norms = {
function norm(ff) {
return Math.sqrt(integrate(x => x * ff(x) * ff(x), 0, 1));
}
return d3.range(1, N).map(n => norm(x => R(n, x)));
}
Insert cell
Insert cell
// The normalized eigenfunctions
// Since we divide by the norm, these each have norm 1.
function F(n, x) {
return R(n, x) / norms[n - 1];
}
Insert cell
Insert cell
// This computation checks that the normalized eigenfunctions are,
// indeed, orhonormal.
d3
.range(1, 9)
.map(i =>
d3
.range(1, 9)
.map(j => integrate(x => x * F(i, x) * F(j, x), 0, 1).toFixed(5))
)
Insert cell
Insert cell
// The coefficients to approximat g(r)
c = d3.range(1, N).map(n => integrate(r => g(r) * F(n, r) * r, 0, 1))
Insert cell
Insert cell
Insert cell
Insert cell
// The nth approximation to g using linear comination of the eigenfunctions:
function g_approx(n, r) {
return d3.sum(d3.range(0, n).map(n => c[n] * F(n + 1, r)));
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
function u(t, r) {
return d3.sum(
d3
.range(c.length)
.map(n => c[n] * Math.exp(-(j0_zero(n + 1) ** 2) * t) * F(n + 1, r))
);
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
N = 10
Insert cell
Insert cell
u(0.2, 0)
Insert cell
Insert cell
function norm(ff) {
return Math.sqrt(integrate(x => x * ff(x) * ff(x), 0, 1));
}
Insert cell
function rgb_to_r_g_b(rgb_string) {
return String(
rgb_string
.split('(')[1]
.split(')')[0]
.split(',')
.map(x => String(parseFloat(x) / 255))
).replace(/,/g, ' ');
}
Insert cell
j0_zero = function j0_zero(n) {
let table = [
2.404825557695773,
5.5200781102863115,
8.653727912911013,
11.791534439014281,
14.930917708487787,
18.071063967910924,
21.21163662987926,
24.352471530749302,
27.493479132040253,
30.634606468431976
];
if (n < 11) {
return table[n - 1];
} else {
let z = table[9] + (n - 10) * Math.PI;
for (let i = 0; i < 5; i++) {
z = z + j0(z) / j1(z);
}
return z;
}
}
Insert cell
function integrate(ff, a, b) {
return adaptiveSimpson(ff, a, b, {
tolerance: 1e-11,
maxDepth: 8,
minDepth: 7
});
}
Insert cell
Insert cell
j1 = (await import("https://cdn.jsdelivr.net/npm/@stdlib/esm@0.0.3/math/base/special/besselj1.js"))
.default
Insert cell
j0 = (await import("https://cdn.jsdelivr.net/npm/@stdlib/esm@0.0.3/math/base/special/besselj0.js"))
.default
Insert cell
import {
create_indexedLineSet,
create_indexedFaceSet
} from "@mcmcclur/x3dom-primitives"
Insert cell
import { pt_list_to_coordString } from "ba6b3d20e94e294f"
Insert cell
import { adaptiveSimpson } from '@rreusser/integration@3056'
Insert cell
import { funplot } from '@mbostock/funplot'
Insert cell
import { Range } from "@observablehq/inputs"
Insert cell
x3dom = require('x3dom').catch(() => window['x3dom'])
Insert cell
d3 = require('d3@6')
Insert cell
html`
<style>
canvas {
outline: none
}
</style>`
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more