Published
Edited
Aug 16, 2022
Insert cell
Insert cell
// Number of pass plays, coming right after a run play of >=5 yards, split by “air_yards” dimension values
{
let SEQ = [];
for (let seq of dataModifiedSequences) {
for (let i = 1; i < seq.events.length-1; i++) {
if ((seq.events[i]._eventName == 'pass') && (seq.events[i-1]._eventName == 'run') && (seq.events[i-1].yards_gained >= 5)) {
SEQ.push({selected_node_air_yards: seq.events[i].air_yards});
}
}
}

return vl.markBar()
.width(width-100)
.data(SEQ)
.encode(
vl.x().fieldQ('selected_node_air_yards').bin({maxbins: 100}),
vl.y().count('selected_node_air_yards').title('count of plays')
)
.render();

}
Insert cell
// Average yards gained in a drive by the percent of pass attempts in that drive
{
let SEQ = [];
for (let seq of dataModifiedSequences) {
let newRow = {yards_gained: 0, pass_percent: 0};
for (let ev of seq.events) {
newRow.yards_gained += (ev.hasOwnProperty('yards_gained')) ? ev.yards_gained : 0;
newRow.pass_percent += (ev._eventName == 'pass') ? 1 : 0;
}
newRow.pass_percent = newRow.pass_percent / seq.events.length;
SEQ.push(newRow);
}
return vl.markCircle()
.width(width-100)
.data(SEQ)
.encode(
vl.x().fieldQ('pass_percent'),
vl.y().fieldQ('yards_gained')
)
.render();
}
Insert cell
// Probability of scoring per each additional pass in a drive
{
let SEQ = [];
for (let seq of dataModifiedSequences) {
let has_scored = ['touchdown', 'field_goal'].includes(seq.events[seq.events.length-1]._eventName) ? 1 : 0;
SEQ.push({pass_num: 0, has_scored: has_scored});
let i = 0;
for (let ev of seq.events) {
if (ev._eventName == 'pass') {
i += 1;
SEQ.push({pass_num: i, has_scored: has_scored});
}
}
}
return vl.markArea()
.width(width-100)
.data(SEQ)
.encode(
vl.x().fieldQ('pass_num'),
vl.y().average('has_scored')
)
.render();
}
Insert cell
// Probability of scoring a touchdown and probability of scoring a field_goal per drive number in a game
{
let SEQ = [];
for (let seq of dataModifiedSequences) {
SEQ.push({
drive: seq.drive,
has_touchdown: seq.events[seq.events.length-1]._eventName == 'touchdown' ? 1 : 0,
has_field_goal: seq.events[seq.events.length-1]._eventName == 'field_goal' ? 1 : 0
});
}

const touchdown_probability = vl.markLine({color: 'blue'})
.data(SEQ)
.encode(
vl.x().fieldQ('drive'),
vl.y().average('has_touchdown')
);

const field_goal_probability = vl.markLine({color: 'red'})
.data(SEQ)
.encode(
vl.x().fieldQ('drive'),
vl.y().average('has_field_goal')
);
return vl.layer(touchdown_probability, field_goal_probability).width(width-100).render();
}
Insert cell
// Yards gained per drive by different teams: average, 25%ile, 75%ile, min and max
{
let SEQ = [];
for (let seq of dataModifiedSequences) {
let newRow = {team: seq.pos_team, yards_gained: 0};
for (let ev of seq.events) {
newRow.yards_gained += (ev.hasOwnProperty('yards_gained')) ? ev.yards_gained : 0;
}
SEQ.push(newRow);
}

const min_max = vl.markRule()
.data(SEQ)
.encode(
vl.x().fieldN('team'),
vl.y().min('yards_gained').title(''),
vl.y2().max('yards_gained').title('')
);

const q1_q3 = vl.markBar({width: 20})
.data(SEQ)
.encode(
vl.x().fieldN('team'),
vl.y().q1('yards_gained').title(''),
vl.y2().q3('yards_gained').title('')
);

const average = vl.markCircle({color: 'yellow'})
.data(SEQ)
.encode(
vl.x().fieldN('team'),
vl.y().average('yards_gained').title('yards_gained')
);
return vl.layer(min_max, q1_q3, average).width(width-100).render();
}
Insert cell
// Number of games between each pair of teams
{
let SEQ = [];
for (let seq of dataModifiedSequences) {
SEQ.push({
home_team: seq.home_team,
away_team: seq.away_team
});
}
return vl.markCircle()
.data(SEQ)
.encode(
vl.x().fieldN('home_team').axis({grid: 'on'}),
vl.y().fieldN('away_team').axis({grid: 'on'}),
vl.size().count()
)
.render();
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more