Public
Edited
Jul 26, 2023
7 forks
Importers
7 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
gentoo = d3.csv("https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.220.7&entityid=e03b43c924f226486f2f0ab6709d2381", d3.autoType)
Insert cell
adelie = d3.csv("https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.219.5&entityid=002f3893385f710df69eeebe893144ff", d3.autoType)
Insert cell
chinstrap = d3.csv("https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.221.8&entityid=fe853aa8f7a59aa84cdd3197619ef462", d3.autoType)
Insert cell
Insert cell
Insert cell
Insert cell
penguinsCombo = adelie.concat(gentoo, chinstrap)
Insert cell
Insert cell
Insert cell
penguins = penguinsCombo.map((d) => ({
species: d.Species.split(" ")[0],
island: d.Island,
sex: d.Sex == null || d.Sex == "." ? null : d.Sex.toLowerCase(),
bill_length_mm: d["Culmen Length (mm)"],
bill_depth_mm: d["Culmen Depth (mm)"],
body_mass_g: d["Body Mass (g)"],
flipper_length_mm: d["Flipper Length (mm)"]}))
Insert cell
Insert cell
Insert cell
import {aq, op} from "@uwdata/arquero"
Insert cell
Insert cell
penguinsTable = aq.from(penguins)
Insert cell
Insert cell
penguinsTable
.filter(d => d.sex === "female")
.select('species', 'bill_depth_mm', 'bill_length_mm')
.derive({bill_ratio: d => d.bill_length_mm / d.bill_depth_mm})
.groupby('species')
.rollup({ mean_bill_ratio: d => op.mean(d.bill_ratio)})
.view()
Insert cell
Insert cell
Insert cell
Insert cell
penguins
X
bill_length_mm
Y
bill_depth_mm
Color
species
Size
Facet X
Facet Y
Mark
Auto
Type Chart, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
Plot.plot({
color: { legend: true },
marks: [
Plot.dot(penguins, {
x: "bill_length_mm",
y: "bill_depth_mm",
fill: "species",
tip: true,
r: "body_mass_g",
opacity: 0.5
}),
Plot.frame()
],
color: {range: ["teal", "darkorange", "orchid"]},
r: {domain: d3.extent(penguins.map(d => d.body_mass_g)), range: [1, 20]},
grid: true
})
Insert cell
Insert cell
Insert cell
import {PlotMatrix} with {data} from "@observablehq/autoplot-matrix"
Insert cell
Insert cell
data = penguins
Insert cell
PlotMatrix(data)
Insert cell
Insert cell
Insert cell
Insert cell
Plot.plot({
marks: [
Plot.rectY(
penguins,
Plot.binX(
{ y: "count" },
{ x: (d) => d[chooseVar], fill: "species", fy: "species"}
)
),
Plot.frame()
],
marginRight: 100
})
Insert cell
penguins
X
body_mass_g
Y
Color
Size
Facet X
sex
Facet Y
species
Mark
Auto
Type Chart, then Shift-Enter. Ctrl-space for more options.

Insert cell
viewof chooseWidth = Inputs.range([50, 500], {label: "Bin width:", step: 10})
Insert cell
Plot.plot({
marks: [
Plot.frame({ strokeOpacity: 0.1 }),
Plot.rectY(
penguins,
Plot.binX(
{ y: "count" },
{ fx: "sex", fy: "species", x: "body_mass_g", tip: true, fill: "species", interval: chooseWidth }
)
),
Plot.ruleY([0])
],
marginRight: 100,
width: 800
})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import {scale} from "@chrispahm/hierarchical-clustering"
Insert cell
penguins
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
penguinsComplete = penguins.filter((d) => d.bill_length_mm !== null)// && d.sex == "female")
Insert cell
penguinsScale = scale(penguinsComplete)
Insert cell
penguinsArray = penguinsScale.map(
(d) => [d.bill_length_mm, d.bill_depth_mm, d.body_mass_g, d.flipper_length_mm]
)
Insert cell
Insert cell
Insert cell
penguinsClusters = ML.KMeans(penguinsArray, 3)
Insert cell
Insert cell
penguinsKmeans = penguinsComplete.map((d,i) => ({...d, clusterNo: penguinsClusters.clusters[i]}))
Insert cell
Insert cell
myChart = Plot.plot({ // Remember to name if you want to use embeds!
marks: [
Plot.text(penguinsKmeans, {
x: "body_mass_g",
y: "flipper_length_mm",
text: "clusterNo",
fontSize: "15px",
fontWeight: 500,
fill: "species",
tip: true
})
],
color: { legend: true }
})
Insert cell
clusterCounts = d3.rollup(penguinsKmeans, v => v.length, d => d.species, d => d.clusterNo)
Insert cell
Insert cell
Insert cell
ML = require("https://www.lactame.com/lib/ml/6.0.0/ml.min.js")
Insert cell
penguinsKeyCopy = penguins
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more