Public
Edited
Aug 30, 2022
18 forks
40 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
function addingNumbers(number1, number2){
let number3 = number1 + number2
return number3
}
Insert cell
Insert cell
function multiply(p1, p2) {
// write your code here, -- don't delete the semicolon ->;
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
{ const arrayOfNums = [2, 4, 6, 8];
// pass a function that adds 12 to the array number
const map = arrayOfNums.map(x => x + 12);
return map
}
Insert cell
Insert cell
Insert cell
{ const oddNums = [1, 3, 5, 7];
// create a function that makes each number even
const evenNums = oddNums.map(// write your code here);
return evenNums
}
Insert cell
Insert cell
Insert cell
{ const words = ['business', 'profit', 'quarter', 'market', 'funding', 'audience'];
const result = words.filter(word => word.length > 4);

return result
}
Insert cell
Insert cell
{ const words = ['business', 'profit', 'quarter', 'market', 'funding', 'audience'];
const result = words.filter(word => // write your code here);

return result
}
Insert cell
Insert cell
Insert cell
{ const words = ['business', 'profit', 'quarter', 'market', 'funding', 'audience'];
return // write your slice function here and don't delete the semicolon at the end ->;
}
Insert cell
Insert cell
{
const arrayA = ['a', 'b', 'c'];
const arrayB = ['d', 'e', 'f'];
const arrayC = arrayA.concat(arrayB);

return arrayC
}
Insert cell
Insert cell
{
const array1 = ['a', 'b', 'c'];
const iterator = array1.values();

return iterator;

}
Insert cell
Insert cell
{
const array1 = ['a', 'b', 'c'];
const iterator = array1.keys();

return iterator;
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
athletesBySport.get("Soccer")
Insert cell
Insert cell
athletesByNation = // write your code here
Insert cell
Insert cell
Insert cell
Insert cell
d3.rollup(athletes, v => v.length, d => d.sport)
Insert cell
Insert cell
d3.rollup(athletes, v => d3.sum(v, d => d.earnings), d => d.sport)
Insert cell
Insert cell
d3.groupSort(athletes, g => d3.median(g, d => d.earnings), d => d.earnings)
Insert cell
Insert cell
d3.groupSort(athletes, g => -d3.median(g, d => d.earnings), d => d.earnings)
Insert cell
Insert cell
Insert cell
index = d3.index(athletes, d => d.name)
Insert cell
Insert cell
facts = [
{about: "Neymar", fact: "Neymar is Neymar da Silva Santos Júnior"},
{about: "Roger Federer", fact: "Federer has won 20 Grand Slam men's singles titles"},
{about: "Megan Rapinoe", fact: "Rapinoe was named The Best FIFA Women's Player in 2019"}
]
Insert cell
facts.map(({about: name, fact}) => ({fact, name, ...index.get(name)}))
Insert cell
Insert cell
Insert cell
Insert cell
d3.merge([[1], [2, 3]])
Insert cell
Insert cell
Insert cell
flights = [
{airline: "Icelandair", price: 1621, stops: 3},
{airline: "Multiple airlines", price: undefined, stops: 2},
{airline: "Air France", price: 1948, stops: 0},
{airline: "WestJet", price: undefined, stops: 1},
{airline: "Air France", price: 1951, stops: 1},
{airline: "French Bee", price: 1780, stops: 1}
]
Insert cell
d3.count(flights, d => d.price)
Insert cell
Insert cell
Insert cell
d3.sum([1, 2, 3, -0.5])
Insert cell
Insert cell
Insert cell
olympic_athletes = d3.csv("https://raw.githubusercontent.com/flother/rio2016/master/athletes.csv", d3.autoType)
Insert cell
d3.mean(olympic_athletes, d => d.height)
Insert cell
Insert cell
d3.mean(// add your code here)
Insert cell
Insert cell
Insert cell
d3.median([0, 1, 2, 5])
Insert cell
Insert cell
d3.variance(olympic_athletes, d => d.height)
Insert cell
Insert cell
d3.variance(// add your code here)
Insert cell
Insert cell
d3.deviation(olympic_athletes, d => d.height)
Insert cell
Insert cell
d3.quantile(olympic_athletes, 0.05, d => d.height)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
d3.rank([23, 2, -1, 4])
Insert cell
Insert cell
d3.rank(// add your code here)
Insert cell
Insert cell
Insert cell
values1 = distribution("Uniform") // 1000 values distributed with d3.randomUniform
Insert cell
Insert cell
draw_buckets(bin1, values1)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
data = d3.csv("https://data.seattle.gov/api/views/76t5-zqzr/rows.csv")
Insert cell
data
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import { SummaryTable } from "@observablehq/summary-table"
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import { compareCode } from '@ballingt/comparecode'
Insert cell
bandcampSales1 = FileAttachment("1000000-bandcamp-sales-1.parquet")
Insert cell
max = 18
Insert cell
function distribution(label) {
return select_distribution(label).value
}
Insert cell
function select_distribution(
label,
description = "Random distribution",
length = 1000
) {
const form = html`<form>${randomDistributions.map(
(o, i) =>
`<label style="display: inline-block; margin: 5px 10px 3px 0; font-size: 0.85em;"><input name=radio type=radio value=${i}${
o.label === label ? " checked" : ""
}>${o.label}</label>`
)}
${
description
? `<div style="font-size: 0.85rem; font-style: italic;">${description}</div>`
: ""
}</form>`;
form.oninput = () => {
form.value = Float32Array.from(
{ length },
randomDistributions[+form.radio.value].random
);
};
form.onchange = () => {
// Safari…
form.value = form.radio.value;
form.dispatchEvent(new CustomEvent("input"));
};
form.oninput();
return form;
}
Insert cell
randomDistributions = {
const r20 = d3.randomNormal(max * 0.3, 2),
r21 = d3.randomNormal(max * 0.75, 1),
r4 = d3.randomExponential(0.3);
return [
{ label: "Uniform", random: d3.randomUniform(0.5, max - 0.3) },
{ label: "Normal", random: d3.randomNormal(max / 2, (1.4 * max) / 18) },
{ label: "Two blobs", random: () => (Math.random() > 0.3 ? r20() : r21()) },
{ label: "Skewed right", random: d3.randomLogNormal() },
{ label: "Skewed left", random: () => 18 - r4() }
];
}
Insert cell
function draw_values(svg, values) {
// We sort the data for meaningful transitions.
const current = values.slice().sort();

const prev = (svg && svg.values) || current;

svg.values = current;

d3.select(svg)
.selectAll("circle")
.data(current)
.join("circle")
.attr("r", 2)
.attr("stroke", "#588")
.attr("fill", "lightblue")
.attr("fill-opacity", 0.3)
.attr("cx", (_, i) => x(prev[i]))
.attr("cy", (_, i) => y(i))
.transition()
.duration(500)
.attr("cx", x);

return svg;
}
Insert cell
function draw_buckets(bin, values) {
const svg = this || DOM.svg(width, 100);

const buckets = bin(values);

const binColor = d3
.scaleThreshold()
.domain(buckets.map(d => d.x0))
.range(colors);

d3.select(svg)
.selectAll("rect")
.data(buckets)
.join("rect")
.attr("y", d => 10)
.attr("height", 100 - 2 * 10)
.attr("x", d => (x(d.x0) + 1) | 0)
.attr("width", d => (x(d.x1) | 0) - (x(d.x0) | 0) - 2)
.attr("stroke", d => binColor(d.x0))
.attr("stroke-width", 1)
.attr("stroke-dasharray", d => (d.length === 0 ? "1 5" : null))
.attr("fill", "none");

draw_values(svg, values);

d3.select(svg)
.selectAll("circle")
.attr("fill", binColor)
.attr("stroke", binColor);

d3.select(svg)
.selectAll("text")
.data(buckets.filter(d => d.length > 0))
.join("text")
.attr("x", d => (x(d.x0) + 3) | 0)
.attr("y", 86)
.attr("fill", "black")
.attr("font-size", 9)
.text(d =>
x(d.x1) - x(d.x0) < 50
? d.length
: d.length > 1
? `${d.length} items`
: d.length === 1
? "1 item"
: "empty bin"
);

return svg;
}
Insert cell
y = {
const frac = x => x - (x | 0);
return i => 50 + 25 * frac(952 * Math.sin((i + 0.5) * 876));
}
Insert cell
x = d3.scaleLinear()
.domain([0, max])
.range([30, width - 30])
.clamp(false)
Insert cell
bin1 = d3.bin()
Insert cell
function draw_histogram_from_buckets(buckets, x, opts = {}) {
const width = opts.width || 300,
height = opts.height || 200,
margin = opts.margin || { top: 20, right: 20, bottom: 30, left: 40 },
svg = d3.select(DOM.svg(width, height)),
maxBins = d3.max(buckets, d => d.length),
data = buckets.flat(),
count = data.length,
y = d3
.scaleLinear()
.domain([0, maxBins])
.nice()
.range([height - margin.bottom, margin.top]),
frequency = opts.relative
? d3
.scaleLinear()
.domain([0, maxBins / count])
.nice()
.range([height - margin.bottom, margin.top])
: y,
xAxis = g =>
g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x).tickSizeOuter(0))
.call(g =>
g
.append("text")
.attr("x", width - margin.right)
.attr("y", -4)
.attr("fill", "#000")
.attr("font-weight", "bold")
.attr("text-anchor", "end")
.text(opts.xText)
);

const binColor = d3
.scaleThreshold()
.domain(buckets.map(d => d.x0))
.range(colors);

svg
.append("g")
.selectAll("rect")
.data(buckets)
.join("rect")
.attr("fill", opts.fill || (d => binColor(d.x0)))
.attr("x", d => x(d.x0) + 1)
.attr("width", d => Math.max(0, x(d.x1) - x(d.x0) - 1))
.attr("y", d => y(d.length))
.attr("height", d => y(0) - y(d.length));

svg.append("g").call(xAxis);

if (opts.title)
svg
.append("g")
.append("text")
.text(opts.title)
.style("fill", "#000")
.attr("font-weight", "bold")
.style("font-size", 14)
.style("text-anchor", "end")
.attr("x", width - 30)
.attr("y", 10);

const labels = svg
.append("g")
.selectAll("text")
.data(buckets.filter(d => d.length > 0))
.join("text")
.attr("x", d => ((x(d.x0) + x(d.x1)) / 2) | 0)
.attr("y", d => y(d.length) - 2)
.style("fill", "black")
.style("font-size", 10)
.style("text-anchor", "middle");
if (opts.relative) {
const format = d3.format(".1%");
labels.text(d => format(d.length / count));
} else
labels.text(d =>
x(d.x1) - x(d.x0) < 50
? d.length
: d.length > 1
? `${d.length} items`
: d.length === 1
? "1 item"
: "empty bucket"
);

return svg.node();
}
Insert cell
colors = ["black"]
.concat(d3.schemeCategory10)
.concat(d3.schemePaired)
.concat(d3.schemePastel1)
.concat(d3.schemePastel2)
Insert cell
// Require the d3 library
d3 = require("d3")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more