Published
Edited
Nov 13, 2020
9 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
datedFilename = `https://raw.githubusercontent.com/kerryrodden/nc-absentee-votes/main/versions/absentee_20201103_aggregated_${formatYYYYMMDD(selectedDateParsed)}.csv`
Insert cell
data = {
const csv = await d3.csv(datedFilename, d3.autoType);
return csv.columns.includes("ballot_req_type") ? csv.filter(d => d.ballot_req_type === "MAIL") : csv;
}
Insert cell
Insert cell
table(data)
Insert cell
Insert cell
raceSubset = ["BLACK or AFRICAN AMERICAN", "WHITE"]
Insert cell
statusSubset = ["ACCEPTED", "ACCEPTED - CURED", "PENDING CURE", "RETURNED UNDELIVERABLE", "SPOILED", "WITNESS INFO INCOMPLETE"] // others will be categorized "OTHER"
Insert cell
notAcceptedByRace = d3.rollups(data, v => d3.sum(v, d => d.count), d => d.race, d => d.ballot_rtn_status)
.map(([race, entries]) => {
const total = d3.sum(entries, ([status, value]) => value);
const notAccepted = d3.sum(entries, ([status, value]) => status.startsWith("ACCEPTED") ? 0 : value);
return {race, total, notAccepted, percentage: total ? notAccepted / total : 0};
});
Insert cell
rejectionRatio = {
const black = notAcceptedByRace.find(d => d.race === "BLACK or AFRICAN AMERICAN");
const white = notAcceptedByRace.find(d => d.race === "WHITE");
if (black && white && white.percentage > 0) {
return black.percentage / white.percentage;
} else {
return 0;
}
}
Insert cell
totalRejected = d3.sum(data.filter(d => !d.ballot_rtn_status.startsWith("ACCEPTED")), d => d.count)
Insert cell
rollupByRaceAndStatus = data => {
const dataWithOther = data.map(d => ({ ...d, status: statusSubset.includes(d.ballot_rtn_status) ? d.ballot_rtn_status : "OTHER"}));
return d3.rollups(dataWithOther, v => d3.sum(v, d => d.count), d => d.race, d => d.status)
.flatMap(([race, entries]) => {
const total = d3.sum(entries, d => d[1]);
return entries.map(([status, sum]) => ({race, status, sum, percentage: total ? sum / total : 0}));
})
}
Insert cell
raceStatusSummary = rollupByRaceAndStatus(data)
Insert cell
selectedByCounty = new Map(d3.groups(data, d => d.county_desc)
.map(([county, entries]) => {
const selectedData = rollupByRaceAndStatus(entries)
.filter((d => d.race === selectedRace && selectedStatus.includes(d.status)));
return [county, selectedData];
})
.filter(([county, selectedData]) => selectedData.length > 0))
Insert cell
today = d3.timeFormat("%Y-%m-%d")(Date.now())
Insert cell
selectedDateParsed = parseDate(selectedDate)
Insert cell
parseDate = d3.timeParse("%Y-%m-%d")
Insert cell
formatDate = d3.timeFormat("%B %-e, %Y");
Insert cell
formatYYYYMMDD = d3.timeFormat("%Y%m%d")
Insert cell
Insert cell
barChartData = Object.assign(notAcceptedByRace.filter(({total}) => total >= 100).map(({race, percentage}) => ({name: race, value: percentage})).sort((a, b) => d3.descending(a.value, b.value)), {format: "%"})
Insert cell
margin = ({top: 30, right: 0, bottom: 10, left: 200})
Insert cell
import {chart as horizontalBarChart} with { barChartData as data, margin} from "@d3/horizontal-bar-chart"
Insert cell
Insert cell
countiesNC = new Map((await FileAttachment("NC_FIPS.csv").csv()).map(({code, county}) => [code, county]))
Insert cell
counties = ({type: "FeatureCollection", features: topojson.feature(us, us.objects.counties).features.filter(d => countiesNC.has(d.id))})
Insert cell
cities = (await FileAttachment("Cities_NC.csv").csv({typed: true}))
.map(({name, population, latitude, longitude}) => ({
name, population, coordinates: projection([longitude, latitude])
}))
Insert cell
mapHeight = Math.max(150, width / 3)
Insert cell
path = d3.geoPath(projection)
Insert cell
projection = d3
.geoAlbers()
.rotate([0, 62, 0])
.fitSize([width, mapHeight], counties)
Insert cell
us = d3.json("https://unpkg.com/us-atlas@3/counties-10m.json")
Insert cell
color = d3.scaleSequential()
.domain([0, selectedStatus.includes("ACCEPTED") ? 1.0 : 0.3])
.range([0.15, 0.75].map(d3.interpolateBlues))
Insert cell
percentageFormat = d3.format(".2%")
Insert cell
Insert cell
d3 = require("d3@6")
Insert cell
topojson = require("topojson-client@3")
Insert cell
import {vl} from "@vega/vega-lite-api"
Insert cell
import {date, radio, select} from "@jashkenas/inputs"
Insert cell
import {table} from "@tmcw/tables/2"
Insert cell
import {legend} from "@d3/color-legend"
Insert cell
import {percentageLineChart, ratioLineChart} from "aabc88a9cc02c606"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more