Public
Edited
Jul 29, 2021
Importers
10 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
KDELengthScaleView = slider({
title: "KDE Parameter",
min: 0.01,
max: 1,
value: 0.3, // this can be from dataset
step: 0.01,
precision: 4,
description: html`RBF Kernel Length Scale (${tex `l_\text{KDE}`})`
})
Insert cell
KDELengthScale = Generators.input(KDELengthScaleView)
Insert cell
Insert cell
score = (p) => {
const px = kde(p)
const mean = mathjs.mean(
trainingData.map(d => rbf_for_kde.grad(p, d)),
0
)
return mathjs.multiply(mean, 1 / px)
}
Insert cell
Insert cell
Insert cell
{
chart.update(current_epoch)
chart.showParticleTrajectory(isShownParticleTrajectory)
}
Insert cell
SVGDLengthScaleView = slider({
min: 0.01,
max: 1,
value: 0.3, /// default from dataset
step: 0.01,
precision: 2,
description: html`Kernel Length Scale (${tex `l_\text{SVGD}`})`}
)
Insert cell
Insert cell
lrView = slider({
min: 0.0001,
max: 0.8,
value: 0.3,
precision: 2,
step: 0.01,
description: html`Learning Rate (${tex `\gamma`})`,
title: "SVGD Parameters",
})
Insert cell
Insert cell
numberofEpochsView = slider({
min: 10,
max: 200,
value: 100,
step: 10,
description: html`Number of Epochs (${tex `T`})`
})
Insert cell
Insert cell
totalParticlesView = slider({
min: 10,
max: 200,
value: 50, // default from dataset
step: 10,
description: html`Number of Particles (${tex `M`}); the larger large value the higher latency.`}
)
Insert cell
Insert cell
Insert cell
mutable particles = {
resetParticles;
dataset;
return Array.apply(null, Array(totalParticles)).map(() => [uniformSamplingInRange(-maxVal, maxVal), uniformSamplingInRange(-maxVal, maxVal)])
}
Insert cell
Insert cell
Insert cell
Insert cell
showParticleTrajectoryView = checkbox(
{label: html`Show Particle Trajectory`, checked: false}
)
Insert cell
isShownParticleTrajectory = Generators.input(showParticleTrajectoryView)
Insert cell
showDataView = checkbox({
title: "Visualization",
label: "Show Data",
checked: false
})
Insert cell
showData = Generators.input(showDataView)
Insert cell
showScoreView = checkbox({
label: html`Show Score Vector Field ${tex `\nabla_{\mathbf x}\log \hat p (\mathbf x)`}`,
checked: false
})
Insert cell
showScore = Generators.input(showScoreView)
Insert cell
showContour = Generators.input(showContourView)
Insert cell
showContourView = checkbox({
label: "Show Contour",
checked: true
})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
height = 400
Insert cell
width = 400
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more