Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import { get_labels } from "@pac02/what-kind-of-articles-have-you-created"
Insert cell
term_labels = get_labels(
[
"Q64038205",
"Q17315694",
"Q4644021",
"Q4642661",
"Q16836722",
"Q17315706",
"Q17315704",
"Q17315703",
"Q17315702"
],
lang
).then((d) => d.objects())
Insert cell
term_map = new Map(
term_labels.map(({ label, qid }) => [label + " (" + qid + ")", qid])
)
Insert cell
Insert cell
query = `
SELECT DISTINCT ?item ?itemLabel ?value ?valueLabel
?sitelinks WHERE {
?item p:P39 ?statement.
?statement ps:P39 wd:Q27169;
pq:P2937 wd:${term}.
?item wikibase:sitelinks ?sitelinks.
OPTIONAL{?item wdt:P21 ?value .}
SERVICE wikibase:label { bd:serviceParam wikibase:language "${lang}". }
}
`
Insert cell
data = fetch(
`https://query.wikidata.org/sparql?query=${encodeURIComponent(query)}`,
{ headers: { accept: "application/sparql-results+json" } }
).then((response) => response.json())
Insert cell
array = data.results.bindings.map((d) => ({
item: d.item.value,
itemLabel: d.itemLabel.value,
value: d.value?.value,
valueLabel: d.valueLabel?.value,
sitelinks: parseInt(d.sitelinks.value)
}))
Insert cell
df = aq.from(array)
Insert cell
df.groupby("valueLabel").count().view()
Insert cell
Insert cell
Insert cell
import { qnorm_winitzki, pnorm_hastings } from "@mbostock/error-function"
Insert cell
qnorm_winitzki(0.975)
Insert cell
2 * (1 - pnorm_hastings(1.96))
Insert cell
Insert cell
get_default = () => {
const params = new URL(document.URL).searchParams;
const defaults = {
lang: "en",
term: "P21",
};
if (params.has("term")) {
defaults.term = params.get("term");
}
if (params.has("lang")) {
defaults.lang = params.get("lang");
}
return defaults;
}
Insert cell
get_default()
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more