Published
Edited
Nov 17, 2019
Importers
Insert cell
Insert cell
{
const svg = d3.select(DOM.svg(width, width))
.attr("viewBox", `${-padding} 0 ${width} ${width}`)
.style("max-width", "100%")
.style("height", "auto");

svg.append("g")
.call(xAxis);

svg.append("g")
.call(yAxis);

const cell = svg.append("g")
.selectAll("g")
.data(d3.cross(d3.range(columns.length), d3.range(columns.length)))
.join("g")
.attr("transform", ([i, j]) => `translate(${i * size},${j * size})`);

cell.append("rect")
.attr("fill", "none")
.attr("stroke", "#aaa")
.attr("x", padding / 2 + 0.5)
.attr("y", padding / 2 + 0.5)
.attr("width", size - padding)
.attr("height", size - padding);

cell.each(function([i, j]) {
d3.select(this).selectAll("circle")
.data(data)
.join("circle")
.attr("cx", d => x[i](d[columns[i]]))
.attr("cy", d => y[j](d[columns[j]]));
});

const circle = cell.selectAll("circle")
.attr("r", 3.5)
.attr("fill-opacity", 0.7)
.attr("fill", d => z(d.species));

svg.append("g")
.style("font", "bold 10px sans-serif")
.selectAll("text")
.data(columns)
.join("text")
.attr("transform", (d, i) => `translate(${i * size},${i * size})`)
.attr("x", padding)
.attr("y", padding)
.attr("dy", ".71em")
.text(d => d);

return svg.node();
}
Insert cell
x = columns.map(c => d3.scaleLinear()
.domain(d3.extent(data, d => d[c]))
.rangeRound([padding / 2, size - padding / 2]))
Insert cell
Insert cell
z = d3.scaleOrdinal()
.domain(data.map(d => d.species))
.range(d3.schemeCategory10)
Insert cell
xAxis = {
const axis = d3.axisBottom()
.ticks(6)
.tickSize(size * columns.length);
return g => g.selectAll("g").data(x).join("g")
.attr("transform", (d, i) => `translate(${i * size},0)`)
.each(function(d) { return d3.select(this).call(axis.scale(d)); })
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").attr("stroke", "#ddd"));
}
Insert cell
yAxis = {
const axis = d3.axisLeft()
.ticks(6)
.tickSize(-size * columns.length);
return g => g.selectAll("g").data(y).join("g")
.attr("transform", (d, i) => `translate(0,${i * size})`)
.each(function(d) { return d3.select(this).call(axis.scale(d)); })
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").attr("stroke", "#ddd"));
}
Insert cell
Insert cell
//data = d3.csvParse(await FileAttachment("iris.csv").text(), d3.autoType)
data = {
const url = "https://raw.githubusercontent.com/rasbt/python-machine-learning-book-2nd-edition"
+ "/master/code/ch10/housing.data.txt";
const header = "CRIM,ZN,INDUS,CHAS,NOX,RM,AGE,DIS,RAD,TAX,PTRATIO,B,LSTAT,MEDV\n";
return await d3.text(url)
.then(d => d3.csvParse(header + d.trim().replace(/\n /g, "\n").replace(/[ ,]+/g, ','), d3.autoType))
}
Insert cell
Insert cell
//columns = data.columns.filter(d => d !== "species")
columns = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV'];
Insert cell
width = 954
Insert cell
size = (width - (columns.length + 1) * padding) / columns.length + padding
Insert cell
padding = 20
Insert cell
d3 = require("d3@^5.9")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more