Published
Edited
Oct 9, 2020
3 forks
5 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
showToolTip = (text, coords) => {
d3.select(".tooltip")
.text(text)
.style("top", coords[1] + "px")
.style("left", coords[0] + "px")
.style("visibility", "visible");
}
Insert cell
cScale = d3.scaleSqrt()
.domain([
d3.min(data, d => d.net_donations),
0,
d3.max(data, d => d.net_donations)])
.range([-1, 0, 1])
.interpolate((a, b) => a < 0
? t => d3.interpolateReds(1-t)
: t => d3.interpolateBlues(t))
Insert cell
height = {
const [[x0, y0], [x1, y1]] = d3.geoPath(projection.fitWidth(width, outline)).bounds(outline);
const dy = Math.ceil(y1 - y0), l = Math.min(Math.ceil(x1 - x0), dy);
projection.scale(projection.scale() * (l - 1) / l).precision(0.2);
return dy;
}
Insert cell
outline = ({ type: "Sphere" })
Insert cell
projection = d3.geoNaturalEarth1()
Insert cell
path = d3.geoPath(projection)
Insert cell
countries = {
// group entities by name and year
const entities = d3.group(data, d => d.country, d => d.year);
// attach data to each country in properties
const countries = topojson.feature(world, world.objects.countries);
countries.features.forEach(country => {
country.properties.data = entities.get(country.properties.name);
})
return countries
}
Insert cell
data = d3.csvParse(await FileAttachment("aiddata.csv").text(), d => {
if (d.country === "United States") {
d.country = "United States of America"
}
return {
country: d.country,
year: +d.year,
donations: +d.donations,
receipts: +d.receipts,
net_donations: +d.net_donations }
})
Insert cell
years = Array.from(new Set(data.map(d => d.year).sort()))
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more