dnnPredictions = {
const dnn = tf.sequential({
name: 'dnn',
layers: [
tf.layers.dense({units: 10, inputShape: [1], activation: 'tanh'}),
tf.layers.dense({units: 5, activation: 'tanh'}),
tf.layers.dense({units: 5, activation: 'tanh'}),
tf.layers.dense({units: 1, activation: 'tanh'})
]
});
dnn.compile({loss: 'meanSquaredError', optimizer: 'Adam'});
const history = await dnn.fit(inputData.x, inputData.y);
const predictions = tf.tidy(() =>
dnn.predict(inputData.x.expandDims(1))
);
yield predictions;
try {
yield invalidation;
} finally {
predictions.dispose();
}
}