Published
Edited
Jun 11, 2020
Insert cell
Insert cell
Insert cell
Insert cell
data = d3.csv(
"https://raw.githubusercontent.com/info474-s17/m14-layouts/master/exercise-1/data/prepped_data.csv",
d3.autoType
)
Insert cell
render_data_table(data.slice(0, 10))
Insert cell
Insert cell
// Nest by region
nested = d3
.nest()
.key(d => d.region)
.entries(data)
Insert cell
// Transform into a hierarchy (but don't yet specify the sum() function)
hierarchy = d3.hierarchy({ key: "world", values: nested }, d => d.values)
Insert cell
// Write a function that can compute treemap layout
make_treemap_layout = d3
.treemap()
.round(true)
.tile(d3.treemapResquarify)
.size([width, height])
Insert cell
// Make a color scale for the regions
color = d3
.scaleOrdinal()
.domain(nested.map(d => d.key))
.range(d3.schemeBlues[7])
Insert cell
Insert cell
// Select metric to visualize in the treemap
viewof metric = select({
title: "Metric for visualization",
options: ["fertility_rate", "life_expectancy", "gdp"],
value: "gdp"
})
Insert cell
// Draw the visualization
chart = {
const svg = d3
.create("svg")
.attr("width", width)
.attr("height", height);

svg.node().update = current_metric => {
make_treemap_layout(hierarchy.sum(d => d[current_metric]));
svg
.selectAll("g")
.data(hierarchy.leaves())
.join(enter => {
const gs = enter
.append("g")
.attr("transform", d => `translate(${width / 2}, ${height / 2})`);

gs.append("text")
.text(d => d.data.country_code)
.style("font-size", "10px")
.attr("y", 10);

gs.append("rect")
.style("stroke", "white")
.style("fill", d => color(d.parent.data.key))
.style("fill-opacity", .5);
return gs;
})
.transition()
.ease(d3.easeBounceOut) //uncomment for a bouncing transition
.duration(1500)
.delay((d, i) => i * 20)
.attr("transform", d => `translate(${d.x0}, ${d.y0})`)
.selectAll("rect")
.attr("width", d => d.x1 - d.x0)
.attr("height", d => d.y1 - d.y0);
};
return svg.node();
}
Insert cell
chart.update(metric)
Insert cell
Insert cell
// Draw the visualization
basic_chart = {
make_treemap_layout(basic_data);
const svg = d3
.create("svg")
.attr("width", width)
.attr("height", height);

svg
.selectAll("rect")
.data(hierarchy.leaves())
.join("rect")
.attr("x", d => d.x0)
.attr("width", d => d.x1 - d.x0)
.attr("y", d => d.y0)
.attr("height", d => d.y1 - d.y0)
.style("stroke", "red");

return svg.node();
}
Insert cell
appendix = md`## Appendix`
Insert cell
_ = require("lodash")
Insert cell
d3 = require("d3")
Insert cell
import { select } from "@jashkenas/inputs"
Insert cell
height = 500
Insert cell
import {
displayCaution,
render_data_table,
table_styles
} from "@info474/utilities"
Insert cell
table_styles
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more