Public
Edited
Nov 17, 2022
Insert cell
Insert cell
Insert cell
years = d3.range(2015, 2020)
Insert cell
Insert cell
//wait for everything to finish
rawCensusData = Promise.all(
//going each year one-by-one
years.map(
//go through each year in order
async (year) =>
//call census API
await d3.json(
"https://api.census.gov/data/" +
year +
"/acs/acs1?get=NAME,B28002_004E,B28002_001E&for=state:*"
)
)
)
Insert cell
cleanedData = rawCensusData.map((censusYear, i) =>
//remove the header row, and then iterate over all states
censusYear.slice(1).map((state) => ({
name: state[0],
internetHouseholds: parseInt(state[1]),
totalHouseholds: parseInt(state[2]),
internetPercentage: parseInt(state[1]) / parseInt(state[2]),
year: new Date(years[i], 0)
}))
)
Insert cell
Insert cell
states = cleanedData[0].map((state) => state.name)
Insert cell
//work through all the states
transposedData = states.map((state) =>
//work through each year, and find the correct state inside of it
cleanedData.map((year) => year.find((yearState) => yearState.name === state))
)
Insert cell
Insert cell
Insert cell
yearObjects = years.map((year) => new Date(year, 0))
Insert cell
xScale = d3
.scaleTime()
.domain(d3.extent(yearObjects))
.range([margin.left, width - margin.right])
Insert cell
xAxis = (g) =>
g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(xScale))
Insert cell
yScale = d3
.scaleLinear()
.domain(d3.extent(transposedData.flat(Infinity), (d) => d.internetPercentage))
.nice()
.range([height - margin.bottom, margin.top])
Insert cell
yAxis = (g) =>
g.attr("transform", `translate(${margin.left},0)`).call(d3.axisLeft(yScale))
Insert cell
Insert cell
height = 600
Insert cell
Insert cell
margin = ({ top: 20, right: 20, bottom: 30, left: 80 })
Insert cell
Insert cell
lineGen = d3
.line()
.x((d) => xScale(d.year))
.y((d) => yScale(d.internetPercentage))
Insert cell
chart = {
// Create an empty SVG with specified width and height.
const svg = d3.create("svg").attr("width", width).attr("height", height);

// Draw the x and y axes.
svg.append("g").call(xAxis);
svg.append("g").call(yAxis);

// Draw the line.
transposedData.map((state) => {
svg
.append("path")
.datum(state)
.attr("d", lineGen)
.attr("fill", "none")
.attr("stroke", "blue")
.attr("stroke-width", 0.5);
});

return svg.node();
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more