Public
Edited
Jul 12, 2023
Insert cell
Insert cell
Plot.plot({
padding: 0,
x: {axis: "top",
label: "Date",
//tickFormat: "d",
//ticks: d3.ticks(...d3.extent(data, (d) => d.Month), 10),

//tickFormat: Plot.formatMonth("en", "short")
},
y: {label: "Episode", label: null},
color: {type: "linear", scheme: "PiYG"},
marks: [
Plot.cell(data, {x: (d) => d.Month, y: "National Inflation Rate", fill: "CPI", inset: 0.5}),
]
})
Insert cell
Plot.plot({
padding: 0,
marginLeft: 300,
round: false,
label: null,
x: {axis: "top"},
marks: [
Plot.barX(data, {
x: "Month",
y: "National Inflation Rate",
interval: "month",
inset: 0.5,
fill: "CPI",
title: "CPI",
tip: "xy"
}),
]
})
Insert cell
simpsons = FileAttachment("simpsons.csv").csv({typed: true})
Insert cell
data = FileAttachment("index3 (18).csv").csv({typed: true})
Insert cell
data.forEach(d => {
const year = d.Month.slice(0, 4);
const month = d.Month.slice(5, 7);
d.Month = new Date(`${year}-${month}-01`);
d["CPI"] = +d["CPI"];
});
Insert cell
d3.ticks(...d3.extent(data, (d) => d.Month), 2)
Insert cell
Plot.plot({
x: {
ticks: d3.ticks(...d3.extent(hadcrut, (d) => d.year), 10),
tickFormat: "d",
interval: 1, // recommended in case of missing data
label: null
},
color: {
scheme: "BuRd"
},
marks: [
Plot.cell(hadcrut, {x: "year", fill: "anomaly"})
]
})
Insert cell
hadcrut = (await FileAttachment("hadcrut-annual.txt").text())
.trim().split(/\n/g) // split into lines
.map(line => line.split(/\s+/g)) // split each line into fields
.map(([year, anomaly]) => ({ // extract the year and median anomaly
year: +year, // as a number
anomaly: +anomaly
}))
Insert cell
d3.ticks(...d3.extent(hadcrut, (d) => d.year), 10)
Insert cell
axis(d3.scaleTime())
.ticks(20)
.render()
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more