Public
Edited
Mar 11, 2023
2 forks
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
dataDefenseLog = eventDataByEventName.fll_ae_21_1.defender_ticket
Insert cell
dataDefenseLog
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
dataHappeningLog = eventDataByEventName.fll_ae_21_1.eh_internal_happening
Insert cell
dataHappeningLog
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
data = eventDataByEventName.fll_ae_21_1.attack_campaign_scenarios
Insert cell
data
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Plot.plot({
marks: [
Plot.tickX(eventDataByEventName.fll_ae_22_1.defender_ticket, { x: d => new Date(d["created_at"]), y: _ => "Defense Log", stroke: "priority" }),
Plot.tickX(eventDataByEventName.fll_ae_22_1.eh_internal_happening, { x: d => new Date(d["occurrence_time"]), y: _ => "Happening Log", stroke: "source" }),
],
y: { domain: ["Defense Log", "Happening Log"] },
x: { domain: d3.extent(eventDataByEventName.fll_ae_22_1.attack_campaign_scenarios.flatMap(d => [d.start_time, d.end_time].map(d => new Date(d)).filter(d => d.getFullYear() > 1980))) },
marginLeft: 100
})
Insert cell
Plot.plot({
marks: [
Plot.tickX(eventDataByEventName.fll_ae_21_1.defender_ticket, { x: d => new Date(d["created_at"]), y: _ => "Defense Log", stroke: "priority" }),
Plot.tickX(eventDataByEventName.fll_ae_21_1.eh_internal_happening, { x: d => new Date(d["occurrence_time"]), y: _ => "Happening Log", stroke: "source" }),
],
y: { domain: ["Defense Log", "Happening Log"] },
x: { domain: d3.extent(eventDataByEventName.fll_ae_21_1.attack_campaign_scenarios.flatMap(d => [d.start_time, d.end_time].map(d => new Date(d)).filter(d => d.getFullYear() > 1980))) },
marginLeft: 100
})
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more