model = {
const Sdata = tf.tensor1d(data.map((e)=>({age: e['age']})).map(e => e.age).slice(0, 10));
const Fdata = tf.tensor1d(
data.map((e)=>({percare: e['Personal Care Activities']})).map(e => e.percare).slice(0, 10));
const Rdata = tf.tensor1d(data.map((e) => ({salary: e['salary']})).map(e => e.salary).slice(0, 10))
const a0 = tf.scalar(Math.random()).variable();
const a1 = tf.scalar(Math.random()).variable();
const a2 = tf.scalar(Math.random()).variable();
const fun = (r,s) => a2.mul(r).add(a1.mul(s)).add(a0)
const cost = (pred, label) => pred.sub(label).square().mean();
const learningRate = 0.001;
const optimizer = tf.train.sgd(learningRate);
for (let i = 0; i < 800; i++) {
console.log("training")
optimizer.minimize(() => cost(fun(Rdata,Sdata), Fdata));
}
console.log(`a: ${a0.dataSync()}, b: ${a1.dataSync()}, c: ${a2.dataSync()}`);
const preds = fun(Rdata,Sdata).dataSync();
preds.forEach((pred, i) => {
console.log(`x: ${i}, pred: ${pred}`);
});
return preds;
}