Public
Edited
May 31, 2023
Insert cell
md `## Evolucion temporal entidades`
Insert cell
parser = d3.timeParse("%Y-%m-%d")
Insert cell
parser_año = d3.timeParse("%Y")
Insert cell
import {select} from "@jashkenas/inputs"
Insert cell
import {LineChart} from "@d3/multi-line-chart"

Insert cell
import {howto, altplot} from "@d3/example-components"
Insert cell
datos=FileAttachment("identidade_año.csv").csv()
Insert cell
Insert cell
chart2 = LineChart(datos_formateados, {
x: d => d.Año,
y: d => d.valueofgoodsusd,
//y: d => (function(d) { return metrica }),
z: d => d.id,
yLabel: "↑ valueofgoods (Dolares)",
width: 600,
height: 400,
color: "steelblue"
//voronoi:"false" // if true, show Voronoi overlay
})
Insert cell
Insert cell
viewof rcv = Inputs.select(d3.group(datos_formateados, d => d.rcvcountry), {rcvcountry: "rcvcountry"})
Insert cell
chart1 = LineChart(rcv, {
x: d => d.Año,
y: d => d.Dls_Kg,
z: d => d.id,
yLabel: "↑ valueofgoods (Dolares)",
width:600,
height: 300,
color: "steelblue"
//voronoi:"true" // if true, show Voronoi overlay
})
Insert cell
reform = rcv.map(function(obj){
var rObj = {};
rObj['Año'] = obj.Año;
rObj['id'] = obj.id;
rObj["'"+ metrica + "'"] = obj[metrica];
return rObj;
});
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more