vl.hconcat(
vl.markBar()
.data(data)
.transform(
vl.aggregate([
{ op: 'mean', field: 'average_value_Unemployment, female (% of female labor force) (modeled ILO estimate)', as: 'mean_female' }
]).groupby(['Country Name']),
vl.window({ op: 'rank', as: 'rank' })
.sort([{ field: 'mean_female', order: 'descending' }]),
vl.filter('datum.rank <= 10')
)
.encode(
vl.y().fieldQ('mean_female').title('Average Female Unemployment Rate (%)'),
vl.x().fieldN('Country Name').title('Country').axis({ labelAngle: -40 }),
)
.width(500)
.height(300)
.title('Countries with Highest Average Female Unemployment Rates'),
vl.markBar()
.data(data)
.transform(
vl.aggregate([
{ op: 'mean', field: 'average_value_Life expectancy at birth, female (years)', as: 'life_expectancy_female' }
]).groupby(['Country Name']),
vl.window({ op: 'rank', as: 'rank' })
.sort([{ field: 'mean_female', order: 'descending' }]),
vl.filter('datum.rank <= 10')
)
.encode(
vl.y().fieldQ('life_expectancy_female').title('Life Expectancy (years)'),
vl.x().fieldN('Country Name').title('Country').axis({ labelAngle: -40 }),
)
.width(500)
.height(300)
.title('Life Expectancy for Countries with Highest Female Unemployment')
).render()