Public
Edited
Apr 18, 2023
1 fork
3 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
random_noise = Array(N).fill(0).map(() => rnorm(0, 1))
Insert cell
training_randomness = Array(N).fill(0).map(() => Math.random())
Insert cell
random_x = Array(N).fill(0).map(() => rnorm(0, 1))
Insert cell
alpha = 0.8
Insert cell
R_alpha = {
const M = setup.data.filter((d) => d.training == false).length;
const R = setup.data.filter((d) => d.training == false).map((d) => d.R).sort();
const k = Math.ceil((alpha) * (M - 1));
return R[k];
}
Insert cell
intervals = {
const N_pred = 1e2;
const xmin = -3;
const xmax = 3;
const xs = Array(N_pred).fill(0).map((_, index) => xmin + (xmax - xmin) / (N_pred - 1) * index);

return xs.map((x) => ({ x: x, lower: setup.fit.predict(x)[1] - R_alpha, upper: setup.fit.predict(x)[1] + R_alpha }));
}
Insert cell
// slightly modified, from https://stackoverflow.com/questions/25582882/javascript-math-random-normal-distribution-gaussian-bell-curve
function rnorm(mean, sd) {
let u = 0, v = 0;
while(u === 0) u = Math.random(); //Converting [0,1) to (0,1)
while(v === 0) v = Math.random();
return (Math.sqrt( -2.0 * Math.log( u ) ) * Math.cos( 2.0 * Math.PI * v ) * sd) + mean;
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more