Public
Edited
Oct 28, 2019
Insert cell
Insert cell
model = `
StorageOnBoardingThroughput:
declare(ram_gb, gb)
declare(block_time, seconds)
declare(layers, layers)
declare(drg_d, ratio)
declare(num_parallel_encoding, integer)
declare(encoding_time, seconds)
declare(sector_size_gb, gb)
declare(cores, integer)
declare(seal_throughput, gb/s)
declare(onboard_storage, gb)
declare(onboard_time, seconds)
declare(onboard_time_hours, hours)
declare(onboard_time_days, days)
declare(rig_size, integer)
declare(onboard_storage_tb, tb)
declare(sealing_per_gb, s/gb)
declare(timegap, integer)
declare(timegap_confidence, integer)
num_parallel_encoding = ram_gb * rig_size / sector_size_gb
cores = num_parallel_encoding
encoding_time = layers * (1/drg_d) * block_time * (timegap * timegap_confidence)

seal_throughput = (sector_size_gb * num_parallel_encoding) / encoding_time
onboard_storage = seal_throughput * onboard_time
onboard_time_hours = onboard_time / 60 / 60
onboard_time_days = onboard_time / 60 / 60 / 24

//onboard_storage = onboard_time * seal_throughput
onboard_storage_tb = onboard_storage / 1000

SupranationalCalcs:
sealing_per_gb = 30 * 60 / 32 / 10
encoding_time = sealing_per_gb * layers * sector_size_gb

`
Insert cell
assignments = ({
block_time: 15,
ram_gb: 128,
layers: 10,
drg_d: 1/4,
onboard_storage: 1*1000*1000,
rig_size: 1,
timegap: 3,
timegap_confidence: 1
})
Insert cell
Insert cell
Insert cell
Insert cell
mul_assign = [
{
block_time: 15,
layers: 10,
drg_d: 1/4,
rig_size: 100,
timegap: 3,
timegap_confidence: 1
},
[
{ onboard_storage_tb: 1000 },
{ onboard_storage_tb: 10*1000 }
],
[
{ ram_gb: 64 },
{ ram_gb: 128 },
{ ram_gb: 256 }
]
]
Insert cell
Insert cell
graph(solve_multiple(model, mul_assign), 'onboard_storage_tb', 'onboard_time_days', ['ram_gb'])
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more