Public
Edited
Dec 5, 2023
2 forks
1 star
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
chart = {
const svg = d3.create("svg").attr("viewBox", `0, 0, ${width}, ${height}`)
const tooltip = d3.select("body").append("div")
.attr("class", "tooltip")
.style("position", "absolute")
.style("visibility", "hidden")
svg.selectAll("path")
.data(countries.features)
.enter()
.append("g")
.attr("class", "country-group")
.each(function (d) {
const countryGroup = d3.select(this);
// Append path element
countryGroup.append("path")
.attr("d", path)
.attr("stroke", "#111")
.attr("stroke-width", 0.5)
.on("mouseover", function(event, d) {
let text = d.properties.name
const mean_homo = d.properties.dataJoined.get(year)[0].mean_homo
const mean_homo_rounded = Math.round((mean_homo + Number.EPSILON) * 100) / 100
text = text + "\nJustifiability: " + mean_homo_rounded
showToolTip(text, [event.pageX, event.pageY])
})
.on("mousemove", function(event) {
d3.select(".tooltip")
.style("top", event.pageY - 10 + "px")
.style("left", event.pageX + 10 + "px")
})
.on("mouseout", function() {
d3.select(".tooltip").style("visibility", "hidden")
})
.attr("fill", d => d.properties.dataJoined?.get(year)
? cScale(d.properties.dataJoined.get(year)[0].mean_homo)
: "lightgrey");

// Append checkmark symbol if when_legal equals the displayed year and not already added
const whenLegalYear = d.properties.dataJoined?.get(year) ? d.properties.dataJoined.get(year)[0].when_legal : null;
const checkmarkAdded = whenLegalYear !== null && whenLegalYear <= year;

if (checkmarkAdded) {
countryGroup.append("text")
.attr("class", "checkmark")
.attr("x", path.centroid(d)[0])
.attr("y", path.centroid(d)[1])
.text("\u2726") // Unicode for symbol
.attr("text-anchor", "middle")
.attr("alignment-baseline", "middle")
.style("font-size", "20px")
.style("fill", "orange");
}
});

return svg.node()
}
Insert cell
showToolTip = (text, coords) => {
d3.select(".tooltip")
.text(text)
.style("top", coords[1] + "px")
.style("left", coords[0] + "px")
.style("visibility", "visible");
}
Insert cell
cScale = d3.scaleLinear()
.domain([
1,
10])
.range([-1, 0, 1])
.interpolate((a, b) => a < 0
? t => d3.interpolateBlues(t)
: t => d3.interpolateReds(1-t))

Insert cell
outline = ({ type: "Sphere" })
Insert cell
projection = d3.geoNaturalEarth1()
Insert cell
path = d3.geoPath(projection)
Insert cell
height = {
const [[x0, y0], [x1, y1]] = d3.geoPath(projection.fitWidth(width, outline)).bounds(outline);
const dy = Math.ceil(y1 - y0), l = Math.min(Math.ceil(x1 - x0), dy);
projection.scale(projection.scale() * (l - 1) / l).precision(0.2);
return dy;
}
Insert cell
countries = {
// group entities by name and year
const entities = d3.group(dataJoined, d => d.country, d => d.year);
// attach data to each country in properties
const countries = topojson.feature(world, world.objects.countries);
countries.features.forEach(country => {
country.properties.dataJoined = entities.get(country.properties.name);
})
return countries
}
Insert cell
data = d3.csvParse(await FileAttachment("Interpolated_Data_Cleaned.csv").text(), d => {
if (d.country === "United States") {
d.country = "United States of America"
}
return {
country: d.Country,
year: +d.Year,
wave: +d.Wave,
country_code: +d.Country_Code,
mean_homo: +d.mean_homo }
} )

Insert cell
// Assuming your second CSV file is named "legality_1.csv"
legalityData = await FileAttachment("legality_1@1.csv").csv({typed: true});


Insert cell
// Merge data from the second CSV into the original data array
dataJoined = data.map(d => {
const matchingRow = legalityData.find(row => row.Country === d.country);

// Add the new property 'when_legal' based on the additional data
return {
...d,
when_legal: matchingRow ? +matchingRow.Year : null
}
});

// Now, each object in the output array has a new 'when_legal' property based on the legality data
Insert cell
{for (let i = 0; i < data.length; i++) {
data[i].Year += cars[i] + "<br>";
}}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more