Published
Edited
Apr 16, 2020
2 stars
Insert cell
md`# Mesmerizing Spirograph

Recreated a cool visualization [found here](https://www.reddit.com/r/oddlysatisfying/comments/g0c88z/this_mesmerizing_spirograph/) on reddit.`
Insert cell
{
const duration = 1000;
const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height]);
const g = svg.append("g").attr("transform", "translate(300,300)");
const starsJoin = g.selectAll('path')
.data(stars)
.join("path")
.attr('class', 'star')
.attr('fill', 'none')
.attr('stroke', d => d3.interpolateRgbBasis(["red", "yellow", "green", "blue", "purple"])(d/d3.max(stars)))
.attr('d', d => star({length, d}))
.style('opacity', 0)
.transition()
// .duration(d => d*1000)
.delay(d => d*duration)
.duration(duration)
.ease(d3.easeLinear)
.style('opacity', 1)
.attrTween("stroke-dasharray", function() {
const length = this.getTotalLength();
return d3.interpolate(`0,${length}`, `${length},${length}`);
})

return svg.node();
}
Insert cell
color = d3.scaleLinear()
.domain(d3.extent(stars))
.range(["red", "green", "blue"])
.interpolate(d3.interpolateRgb.gamma(4.2))
Insert cell
stars = d3.range(21)
Insert cell
star = d3
.radialLine()
.angle(function(_,i,config) {
// debugger
return i * 2 * Math.PI / 5 * 2 + 0.0174533 * config.d * 3.428571428571429
})
.curve(d3.curveCardinalClosed)
.radius(() => 250)
Insert cell
length = 5
Insert cell
{
const length = (3 + ((now / 1500) % 8)) | 0;
const polygon = d3
.radialLine()
.angle((_, i) => (i / length) * 2 * Math.PI)
.curve(d3.curveLinearClosed)
.radius(() => 150),
path = polygon({ length });
return svg`<svg width=300 height=300>
<path d="${path}" fill="none" stroke="black" transform="translate(150,150)">
</svg>`;
}
Insert cell
(3 + ((now / 1500) % 9)) | 0
Insert cell
height = 600
Insert cell
margin = ({top: 20, right: 30, bottom: 30, left: 40})
Insert cell
d3 = require("d3@5")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more