Published
Edited
May 29, 2022
1 fork
Importers
30 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
freeny = FileAttachment('freeny.csv').csv({ typed: true })
Insert cell
Insert cell
summary(freeny)
Insert cell
Insert cell
Insert cell
pairplot(freeny, { width: 600, height: 450, spacing: -10 })
Insert cell
Insert cell
Insert cell
Insert cell
linear_model = lm('y ~ income.level', freeny)
Insert cell
summary(linear_model)
Insert cell
Insert cell
multiple_regression = lm('market.potential ~ price.index + income.level', freeny)
Insert cell
summary(multiple_regression)
Insert cell
Insert cell
multiple_regression_scaled = lm(
'scale(market.potential) ~ scale(price.index) + scale(income.level) - 1',
freeny
)
Insert cell
summary(multiple_regression_scaled)
Insert cell
Insert cell
multiple_regression_interaction = lm(
'market.potential ~ price.index + income.level + income.level * price.index',
freeny
)
Insert cell
summary(multiple_regression_interaction)
Insert cell
Insert cell
multiple_regression_arithmetic = lm(
'log(market.potential) ~ price.index + log(income.level)',
freeny
)
Insert cell
summary(multiple_regression_arithmetic)
Insert cell
Insert cell
regression_wo_intercept = lm(
'market.potential ~ price.index + income.level - 1',
freeny
)
Insert cell
summary(regression_wo_intercept)
Insert cell
Insert cell
Insert cell
Insert cell
rlm = lm('weight ~ depression', roller, {
weights: roller.map(r => r.w)
})
Insert cell
summaryStatisticsReg = summary(rlm)
Insert cell
Insert cell
Insert cell
polyReg = lm('y ~ poly(income.level, 6)', freeny)
Insert cell
summary(polyReg)
Insert cell
Insert cell
summary(lm("y ~ income.level + I(income.level^2)", freeny))
Insert cell
Insert cell
Insert cell
hsb2 = FileAttachment("hsb2.csv").csv({ typed: true })
Insert cell
hsb_with_factor = hsb2.map(r => {
const factor = 'race';
// get uniqe factor levels
const factorLevels = [...new Set(hsb2.map(r => r[factor]))];
const sortedLevels = factorLevels.sort();
// for each factor level, add a new column to our dataframe
// e.g. race.f1, race.f2 ...
sortedLevels.forEach(
level => (r[factor + '.f' + level] = r[factor] === level ? 1 : 0)
);
return r;
})
Insert cell
summary(lm('write ~ race.f2 + race.f3 + race.f4', hsb_with_factor))
Insert cell
Insert cell
Insert cell
vifValues = vif(multiple_regression)
Insert cell
View(vifValues)
Insert cell
Insert cell
Insert cell
publicationTable = stargazer(
[multiple_regression, multiple_regression_scaled],
{
labels: {
"market.potential": "Market potential",
"scale(market.potential)": "Market potential, scaled",
"price.index": "Price index",
"income.level": "Income level",
"scale(price.index,2)": "Price index, scaled",
"scale(income.level,1)": "Income level, scaled"
},
modelNames: ["OLS", "Scaled OLS"],
modelTypes: {} // { OLS: 2}
}
)
Insert cell
Insert cell
rCodeString = multiple_regression.toR(true)
Insert cell
Insert cell
Insert cell
Insert cell
summary(multiple_regression)
Insert cell
import { ocpu } from "@bryangingechen/hello-r-on-opencpu"
Insert cell
Insert cell
summary([{ m: 1, n: 2, c: 'red' }])
Insert cell
Insert cell
summary([{ c: 'red', m: 1, n: 2 }], { ignoreNonNumeric: true })
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
lm = (await import(await FileAttachment("linear-models.esm@50.js").url()))
.default
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more