Public
Edited
Oct 24, 2023
3 forks
9 stars
Insert cell
Insert cell
Insert cell
names = ["joe", "sally", "norbert", "ann", "rafael"]
Insert cell
ages = [32, 13, 14, 22, 76]
Insert cell
d3.zip(names, ages)
Insert cell
Insert cell
Insert cell
Insert cell
preferences = ["ice cream", "juice", "cake"]
Insert cell
d3.zip(names, preferences, ages) // 🌶 we've just lost Ann and Rafael!
Insert cell
Insert cell
Insert cell
d3.transpose([names, ages])
Insert cell
Insert cell
url = "https://api.census.gov/data/2015/acs/acs5?get=B01001_003E,B01001_004E,B01001_005E,B01001_006E,B01001_007E,B01001_008E,B01001_009E,B01001_010E,B01001_011E,B01001_012E,B01001_013E,B01001_014E,B01001_015E,B01001_016E,B01001_017E,B01001_018E,B01001_019E,B01001_020E,B01001_021E,B01001_022E,B01001_023E,B01001_024E,B01001_025E,B01001_027E,B01001_028E,B01001_029E,B01001_030E,B01001_031E,B01001_032E,B01001_033E,B01001_034E,B01001_035E,B01001_036E,B01001_037E,B01001_038E,B01001_039E,B01001_040E,B01001_041E,B01001_042E,B01001_043E,B01001_044E,B01001_045E,B01001_046E,B01001_047E,B01001_048E,B01001_049E&for=us:*"
Insert cell
Insert cell
data = load_data(url) // see the Annex
Insert cell
Insert cell
d3.transpose(data)
Insert cell
Insert cell
map = new Map(d3.transpose(data))
Insert cell
map.get("B01001_022E")
Insert cell
Insert cell
map_numeric = {
const [keys, values] = await load_data(url); // await d3.json(url);
return new Map(d3.zip(keys, Float64Array.from(values)));
}
Insert cell
map_numeric.get("B01001_022E")
Insert cell
Insert cell
d3.transpose(d3.zip(names, ages))
Insert cell
Insert cell
d3.transpose(Array.from(map))
Insert cell
Insert cell
w = width
Insert cell
h = 100
Insert cell
r = (_, i) => 100 + 130 * ((Math.random() * (i % w)) / w)
Insert cell
g = (_, i) => 255 * (1 - (Math.random() * (i % w)) / w)
Insert cell
b = (_, i) => 255 - (Math.random() * 255 * i) / w / h
Insert cell
a = (_, i) => (Math.random() > 0.1 ? 255 : 128)
Insert cell
Insert cell
R = Uint8Array.from({length: w * h}, r)
Insert cell
G = Uint8Array.from({length: w * h}, g)
Insert cell
B = Uint8Array.from({length: w * h}, b)
Insert cell
A = Uint8Array.from({length: w * h}, a)
Insert cell
Insert cell
d3.zip(R, G, B, A) // zip creates an array of arrays…
Insert cell
newData = d3.zip(R, G, B, A).flat() // … that can be flattened to match the canvas ImageData structure
Insert cell
Insert cell
Insert cell
Insert cell
d3 = require("d3-array@3", "d3-fetch@3")
Insert cell
function visual_zip(lists) {
const transposed = d3.transpose(lists); // or d3.zip(...lists)

return svg`<svg width=100% height=${(1.5 + lists.length) *
30} style="text-anchor:middle;dominant-baseline: middle; font: 14px sans-serif">
<defs>
<marker id="arrow"
refX="7" refY="5"
markerUnits="userSpaceOnUse" markerWidth="10" markerHeight="10"
orient="auto">
<path d="M0,1L8,5L0,9Z" fill=red />
</marker>
</defs>

<path d="M70,${7 + lists.length * 15} C2,30 2,80 60,${35 +
lists.length * 30}" marker-end="url(#arrow)" stroke=red fill=none />

${lists
.map((things, j) =>
things.map(
(name, i) =>
svg`<g transform="translate(${(i + 1) * 120},${20 +
30 * j})"><text>${name}</text></g>`
)
)
.flat()}

${d3.range(d3.max(lists, d => d.length)).map(
(pair, i) =>
svg`<ellipse transform="translate(${(i + 1) * 120},${7 +
lists.length * 15})" rx=50 ry=${6 + lists.length * 15} stroke='${
i < transposed.length ? "red" : "#aaa"
}' fill=none stroke-dasharray="${i < transposed.length ? "" : "2 5"}" />
`
)}

${transposed.map(
(pair, i) =>
svg`<g transform="translate(${(i + 1) * 120},${35 +
lists.length * 30})"><text>${JSON.stringify(pair).replace(
/"/g,
""
)}</text></g>`
)}
`;
}
Insert cell
// Replaces d3.json(url): the API we call is fragile — for the sake of this tutorial we copied the data inline
function load_data(url) {
return [["B01001_003E","B01001_004E","B01001_005E","B01001_006E","B01001_007E","B01001_008E","B01001_009E","B01001_010E","B01001_011E","B01001_012E","B01001_013E","B01001_014E","B01001_015E","B01001_016E","B01001_017E","B01001_018E","B01001_019E","B01001_020E","B01001_021E","B01001_022E","B01001_023E","B01001_024E","B01001_025E","B01001_027E","B01001_028E","B01001_029E","B01001_030E","B01001_031E","B01001_032E","B01001_033E","B01001_034E","B01001_035E","B01001_036E","B01001_037E","B01001_038E","B01001_039E","B01001_040E","B01001_041E","B01001_042E","B01001_043E","B01001_044E","B01001_045E","B01001_046E","B01001_047E","B01001_048E","B01001_049E","us"],["10175713","10470147","10561873","6447043","4495581","2453321","2400843","6722248","10989596","10625791","9899569","10330986","10571984","11051409","10173646","3730038","5094814","3060112","3816159","4867513","3416432","2378691","2000771","9736305","10031835","10117913","6142996","4268861","2322446","2283357","6422017","10708414","10557848","9956213","10465142","10798384","11474081","10828301","4018137","5572692","3385427","4285748","5720208","4313697","3432738","3937981","1"]];
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more