Unlisted
Edited
Sep 23, 2024
142 forks
Importers
73 stars
Insert cell
Insert cell
chart = Histogram(unemployment, {
value: d => d.rate,
label: "Unemployment rate (%) →",
width,
height: 500,
color: "steelblue"
})
Insert cell
unemployment = FileAttachment("unemployment-x.csv").csv({typed: true})
Insert cell
Insert cell
Insert cell
// Copyright 2021 Observable, Inc.
// Released under the ISC license.
// https://observablehq.com/@d3/histogram
function Histogram(data, {
value = d => d, // convenience alias for x
domain, // convenience alias for xDomain
label, // convenience alias for xLabel
format, // convenience alias for xFormat
type = d3.scaleLinear, // convenience alias for xType
x = value, // given d in data, returns the (quantitative) x-value
y = () => 1, // given d in data, returns the (quantitative) weight
thresholds = 40, // approximate number of bins to generate, or threshold function
normalize, // whether to normalize values to a total of 100%
marginTop = 20, // top margin, in pixels
marginRight = 30, // right margin, in pixels
marginBottom = 30, // bottom margin, in pixels
marginLeft = 40, // left margin, in pixels
width = 640, // outer width of chart, in pixels
height = 400, // outer height of chart, in pixels
insetLeft = 0.5, // inset left edge of bar
insetRight = 0.5, // inset right edge of bar
xType = type, // type of x-scale
xDomain = domain, // [xmin, xmax]
xRange = [marginLeft, width - marginRight], // [left, right]
xLabel = label, // a label for the x-axis
xFormat = format, // a format specifier string for the x-axis
yType = d3.scaleLinear, // type of y-scale
yDomain, // [ymin, ymax]
yRange = [height - marginBottom, marginTop], // [bottom, top]
yLabel = "↑ Frequency", // a label for the y-axis
yFormat = normalize ? "%" : undefined, // a format specifier string for the y-axis
color = "currentColor" // bar fill color
} = {}) {
// Compute values.
const X = d3.map(data, x);
const Y0 = d3.map(data, y);
const I = d3.range(X.length);

// Compute bins.
const bins = d3.bin().thresholds(thresholds).value(i => X[i])(I);
const Y = Array.from(bins, I => d3.sum(I, i => Y0[i]));
if (normalize) {
const total = d3.sum(Y);
for (let i = 0; i < Y.length; ++i) Y[i] /= total;
}

// Compute default domains.
if (xDomain === undefined) xDomain = [bins[0].x0, bins[bins.length - 1].x1];
if (yDomain === undefined) yDomain = [0, d3.max(Y)];

// Construct scales and axes.
const xScale = xType(xDomain, xRange);
const yScale = yType(yDomain, yRange);
const xAxis = d3.axisBottom(xScale).ticks(width / 80, xFormat).tickSizeOuter(0);
const yAxis = d3.axisLeft(yScale).ticks(height / 40, yFormat);
yFormat = yScale.tickFormat(100, yFormat);

const svg = d3.create("svg")
.attr("width", width)
.attr("height", height)
.attr("viewBox", [0, 0, width, height])
.attr("style", "max-width: 100%; height: auto; height: intrinsic;");

svg.append("g")
.attr("transform", `translate(${marginLeft},0)`)
.call(yAxis)
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").clone()
.attr("x2", width - marginLeft - marginRight)
.attr("stroke-opacity", 0.1))
.call(g => g.append("text")
.attr("x", -marginLeft)
.attr("y", 10)
.attr("fill", "currentColor")
.attr("text-anchor", "start")
.text(yLabel));

svg.append("g")
.attr("fill", color)
.selectAll("rect")
.data(bins)
.join("rect")
.attr("x", d => xScale(d.x0) + insetLeft)
.attr("width", d => Math.max(0, xScale(d.x1) - xScale(d.x0) - insetLeft - insetRight))
.attr("y", (d, i) => yScale(Y[i]))
.attr("height", (d, i) => yScale(0) - yScale(Y[i]))
.append("title")
.text((d, i) => [`${d.x0} ≤ x < ${d.x1}`, yFormat(Y[i])].join("\n"));

svg.append("g")
.attr("transform", `translate(0,${height - marginBottom})`)
.call(xAxis)
.call(g => g.append("text")
.attr("x", width - marginRight)
.attr("y", 27)
.attr("fill", "currentColor")
.attr("text-anchor", "end")
.text(xLabel));

return svg.node();
}
Insert cell
import {howto, altplot} from "@d3/example-components"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more