Unlisted
Edited
Sep 23, 2024
28 forks
Importers
55 stars
Insert cell
Insert cell
Insert cell
chart = ScatterplotMatrix(penguins, {
columns: [
"culmen_length_mm",
"culmen_depth_mm",
"flipper_length_mm",
"body_mass_g"
],
z: d => d.species
})
Insert cell
penguins = FileAttachment("penguins.csv").csv({typed: true})
Insert cell
Insert cell
// Copyright 2021 Observable, Inc.
// Released under the ISC license.
// https://observablehq.com/@d3/splom
function ScatterplotMatrix(data, {
columns = data.columns, // array of column names, or accessor functions
x = columns, // array of x-accessors
y = columns, // array of y-accessors
z = () => 1, // given d in data, returns the (categorical) z-value
padding = 20, // separation between adjacent cells, in pixels
marginTop = 10, // top margin, in pixels
marginRight = 20, // right margin, in pixels
marginBottom = 30, // bottom margin, in pixels
marginLeft = 40, // left margin, in pixels
width = 928, // outer width, in pixels
height = width, // outer height, in pixels
xType = d3.scaleLinear, // the x-scale type
yType = d3.scaleLinear, // the y-scale type
zDomain, // array of z-values
fillOpacity = 0.7, // opacity of the dots
colors = d3.schemeCategory10, // array of colors for z
} = {}) {
// Compute values (and promote column names to accessors).
const X = d3.map(x, x => d3.map(data, typeof x === "function" ? x : d => d[x]));
const Y = d3.map(y, y => d3.map(data, typeof y === "function" ? y : d => d[y]));
const Z = d3.map(data, z);

// Compute default z-domain, and unique the z-domain.
if (zDomain === undefined) zDomain = Z;
zDomain = new d3.InternSet(zDomain);

// Omit any data not present in the z-domain.
const I = d3.range(Z.length).filter(i => zDomain.has(Z[i]));

// Compute the inner dimensions of the cells.
const cellWidth = (width - marginLeft - marginRight - (X.length - 1) * padding) / X.length;
const cellHeight = (height - marginTop - marginBottom - (Y.length - 1) * padding) / Y.length;

// Construct scales and axes.
const xScales = X.map(X => xType(d3.extent(X), [0, cellWidth]));
const yScales = Y.map(Y => yType(d3.extent(Y), [cellHeight, 0]));
const zScale = d3.scaleOrdinal(zDomain, colors);
const xAxis = d3.axisBottom().ticks(cellWidth / 50);
const yAxis = d3.axisLeft().ticks(cellHeight / 35);

const svg = d3.create("svg")
.attr("width", width)
.attr("height", height)
.attr("viewBox", [-marginLeft, -marginTop, width, height])
.attr("style", "max-width: 100%; height: auto; height: intrinsic;");

svg.append("g")
.selectAll("g")
.data(yScales)
.join("g")
.attr("transform", (d, i) => `translate(0,${i * (cellHeight + padding)})`)
.each(function(yScale) { return d3.select(this).call(yAxis.scale(yScale)); })
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").clone()
.attr("x2", width - marginLeft - marginRight)
.attr("stroke-opacity", 0.1));

svg.append("g")
.selectAll("g")
.data(xScales)
.join("g")
.attr("transform", (d, i) => `translate(${i * (cellWidth + padding)},${height - marginBottom - marginTop})`)
.each(function(xScale) { return d3.select(this).call(xAxis.scale(xScale)); })
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").clone()
.attr("y2", -height + marginTop + marginBottom)
.attr("stroke-opacity", 0.1))

const cell = svg.append("g")
.selectAll("g")
.data(d3.cross(d3.range(X.length), d3.range(Y.length)))
.join("g")
.attr("fill-opacity", fillOpacity)
.attr("transform", ([i, j]) => `translate(${i * (cellWidth + padding)},${j * (cellHeight + padding)})`);

cell.append("rect")
.attr("fill", "none")
.attr("stroke", "currentColor")
.attr("width", cellWidth)
.attr("height", cellHeight);

cell.each(function([x, y]) {
d3.select(this).selectAll("circle")
.data(I.filter(i => !isNaN(X[x][i]) && !isNaN(Y[y][i])))
.join("circle")
.attr("r", 3.5)
.attr("cx", i => xScales[x](X[x][i]))
.attr("cy", i => yScales[y](Y[y][i]))
.attr("fill", i => zScale(Z[i]));
});

// TODO Support labeling for asymmetric sploms?
if (x === y) svg.append("g")
.attr("font-size", 10)
.attr("font-family", "sans-serif")
.attr("font-weight", "bold")
.selectAll("text")
.data(x)
.join("text")
.attr("transform", (d, i) => `translate(${i * (cellWidth + padding)},${i * (cellHeight + padding)})`)
.attr("x", padding / 2)
.attr("y", padding / 2)
.attr("dy", ".71em")
.text(d => d);

return Object.assign(svg.node(), {scales: {color: zScale}});
}
Insert cell
import {Swatches} from "@d3/color-legend"
Insert cell
import {howto, altplot} from "@d3/example-components"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more