Published
Edited
Nov 22, 2020
4 forks
24 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
FileAttachment("trajectories@5.csv")
Insert cell
Insert cell
d3 = require("d3@5")
Insert cell
width = 860
Insert cell
height = 600
Insert cell
radius = 5
Insert cell
padding = 1 // Space between nodes
Insert cell
cluster_padding = 5; // Space between nodes in different stages
Insert cell
groups = {
const groups = {
"Gosford": { x: 450, y: 150, color: "#93D1BA", cnt: 0, fullname: "Gosford" },
"Wyong": { x: 550, y: 100, color: "#BEE5AA", cnt: 0, fullname: "Wyong"},
"Hornsby": { x: 200, y: 375, color: "#79BACE", cnt: 0, fullname: "Hornsby" },
"Ryde": { x: 150, y: 500, color: "lightblue", cnt: 0, fullname: "Ryde" },
"Mona Vale": { x: 500, y: 350, color: "pink", cnt: 0, fullname: "Mona Vale"},
"Manly": { x: 450, y: 500, color: "#FAF49A", cnt: 0, fullname: "Manly"},
"RNS": { x: 300, y: 550, color: "grey", cnt: 0, fullname: "RNS" },
};
return groups
}
Insert cell
groups['RNS'] // take a peek at a group (hospital)
Insert cell
// Load data.
stages = d3.csvParse(await FileAttachment("trajectories@5.csv").text(), d3.autoType)
Insert cell
stages[10] // take a peek at a stage (transfer)
Insert cell
// Consolidate stages by pid.
// The data file is one row per stage change (transfer).
people = {
const people = {};
stages.forEach(d => {
if (d3.keys(people).includes(d.pid + "")) {
people[d.pid + ""].push(d);
} else {
people[d.pid + ""] = [d];
}
});
return people
}
Insert cell
// Create node data.
nodes = d3.keys(people).map(function(d) {
// Initialize count for each group.
groups[people[d][0].grp].cnt += 1;
return {
id: "node"+d,
x: groups[people[d][0].grp].x + Math.random(),
y: groups[people[d][0].grp].y + Math.random(),
r: radius,
color: groups[people[d][0].grp].color,
group: people[d][0].grp,
timeleft: people[d][0].duration,
istage: 0,
stages: people[d]
}
});
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more