Public
Edited
Dec 13, 2023
Insert cell
Insert cell
Insert cell
worldbank2010.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
Plot.plot({
x: {
type: "log"
},
color: {
legend: true,
type: "categorical",
scheme: "Paired"
},
marks: [
Plot.dot(worldbank2010, { x: "gdp", y: "life_exp", fill: "region"})
]
})
Insert cell
Insert cell
Plot.plot({
x: {
type: "log"
},
y: {
type: "log"
},
color: {
legend: true,
type: "sequential",
scheme: "BuGn",
label: "life expectancy"
},
marks: [
Plot.dot(worldbank2010, { x: "gdp", y: "co2", fill: "life_exp", stroke: "black"})
]
})
Insert cell
Insert cell
Plot.plot({
x: {
type: "log"
},
color: {
legend: true,
type: "quantile",
scheme: "BuYlRd",
tickFormat: ".0f"
},
marks: [
Plot.dot(worldbank2010, { x: "gdp", y: "life_exp", fill: "co2"})
]
})
Insert cell
Insert cell
Insert cell
cars
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
Insert cell
Insert cell
Plot.plot({
width: width,
height: 300,
x: {
type: "log"
},
color: {
legend: true,
type: "ordinal",
domain: ["NA", "Low income", "Lower middle income", "Upper middle income", "High income"],
range: ["gray", 'red', 'orange', 'blue', 'green']
},
marks: [
Plot.dot(worldbank2010, { x: "gdp", y: "life_exp", fill: "gray", opacity: 0.2}),
Plot.dot(worldbank2010, { x: "gdp", y: "life_exp", fx: "region", fill: "income_group"}),
Plot.text(worldbank2010, Plot.select({y: "max"}, { x: "gdp", y: "life_exp", fx: "region", text: "country_name", fill: "green", dy: -5})),
Plot.text(worldbank2010, Plot.select({y: "min"}, { x: "gdp", y: "life_exp", fx: "region", text: "country_name", fill: "red", dy: -5})),
Plot.frame()
]
})
Insert cell
Insert cell
Insert cell
regions = ["East Asia & Pacific",
"Europe & Central Asia",
"Latin America & Caribbean",
"Middle East & North Africa",
"North America",
"South Asia",
"Sub-Saharan Africa"]
Insert cell
Insert cell
Plot.plot({
height: 300,
x: {
type: "log"
},
color: {
legend: true,
type: "ordinal",
scheme: "BuGn",
domain: ["NA", "Low income", "Lower middle income", "Upper middle income", "High income"]
},
marks: [
Plot.dot(worldbank2010, { x: "gdp", y: "life_exp", fill: "gray", opacity: 0.2}),
Plot.dot(worldbank2010, { x: "gdp", y: "life_exp", fill: "income_group", filter: d => d.region === regionSelected}),
Plot.text(worldbank2010, Plot.select({y: "max"}, { x: "gdp", y: "life_exp", text: "country_name", fill: "green", dy: -5})),
Plot.text(worldbank2010, Plot.select({y: "min"}, { x: "gdp", y: "life_exp", text: "country_name", fill: "red", dy: -5})),
Plot.frame()
]
})
Insert cell
Insert cell
Insert cell
viewof select = Inputs.select(["A", "B"], {label: "Select one"})
Insert cell
select
Insert cell
import { toggleSwitch } from '@chrispahm/toggle-switch-input-button'
Insert cell
import {Scrubber} from '@mbostock/scrubber'
Insert cell
viewof value = Scrubber(d3.range(1950,2009), {
autoplay: false,
delay: 500,
loop: false,
// initial: 5,
// loopDelay: 1000,
// alternate: true
})
Insert cell
viewof range = Inputs.range([1950,2008], {label: "Amount", step: 1})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import {nations} from "@observablehq/plot-wealth-health-nations"
Insert cell
nations
Insert cell
viewof year = Scrubber(d3.range(1950,2009), {
autoplay: false,
delay: 100,
loop: false,
// initial: 5,
// loopDelay: 1000,
// alternate: true
})
Insert cell
Plot.plot({
width,
height: 500,
y: {
label: "life expectancy"
},
color: {
legend: true
},
marks: [
Plot.dot(nations, {
x: "income",
y: "lifeExpectancy",
r: "population",
fill: "region",
stroke: "black",
filter: d => d.year == year
}),
Plot.dot(nations, Plot.pointer({
x: "income",
y: "lifeExpectancy",
r: "population",
fill: "region",
stroke: "red",
strokeWidth: 10,
opacity: 0.5,
filter: d => d.year == year,
tip: true,
channels: {
nation: "name",
}
}))
],
x: {
type: "log"
}
})
Insert cell
Insert cell
Insert cell
import {personOutlined, personFilled} from "@datavizstudio/person-isotype-matrix"
Insert cell
import {createMatrixData} from "@datavizstudio/person-isotype-matrix"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more