Published
Edited
Sep 16, 2019
Insert cell
Insert cell
chart = {
const svg = d3.select(DOM.svg(width, height));

const g = svg.append("g")
.selectAll("g")
.data(bins)
.join("g");

g.append("path")
.attr("stroke", "currentColor")
.attr("d", d => `
M${x((d.x0 + d.x1) / 2)},${y(d.range[1])}
V${y(d.range[0])}
`);

g.append("path")
.attr("fill", "#ddd")
.attr("d", d => `
M${x(d.x0) + 1},${y(d.quartiles[2])}
H${x(d.x1)}
V${y(d.quartiles[0])}
H${x(d.x0) + 1}
Z
`);

g.append("path")
.attr("stroke", "currentColor")
.attr("stroke-width", 2)
.attr("d", d => `
M${x(d.x0) + 1},${y(d.quartiles[1])}
H${x(d.x1)}
`);

g.append("g")
.attr("fill", "currentColor")
.attr("fill-opacity", 0.2)
.attr("stroke", "none")
.attr("transform", d => `translate(${x((d.x0 + d.x1) / 2)},0)`)
.selectAll("circle")
.data(d => d.outliers)
.join("circle")
.attr("r", 2)
.attr("cx", () => (Math.random() - 0.5) * 4)
.attr("cy", d => y(d.y));

svg.append("g")
.call(xAxis);

svg.append("g")
.call(yAxis);

return svg.node();
}
Insert cell
bins = d3.histogram()
.thresholds(n)
.value(d => d.x)
(data)
.map(bin => {
bin.sort((a, b) => a.y - b.y);
const values = bin.map(d => d.y);
const min = values[0];
const max = values[values.length - 1];
const q1 = d3.quantile(values, 0.00);
const q2 = d3.quantile(values, 0.50);
const q3 = d3.quantile(values, 0.95);
const iqr = q3 - q1; // interquartile range
const r0 = Math.max(min, q1 - iqr * 1.5);
const r1 = Math.min(max, q3 + iqr * 1.5);
bin.quartiles = [q1, q2, q3];
bin.range = [r0, r1];
bin.outliers = bin.filter(v => v.y < r0 || v.y > r1); // TODO
return bin;
})
Insert cell
rttFile = d3.text("https://sg-pub.ripe.net/emile/tmp/minexternalrtts.2019-09-01.txt").then(d => d.split("\n"))
Insert cell
de_prbs = fetch("https://atlas.ripe.net/api/v2/probes/archive?status=1,2").then(d => d.json())
Insert cell
data2 = de_prbs.results.filter(p => p.country_code==="DE").filter(p => p.id < 6000 || p.id > 10000).map(p => {
let pR = rttArr.find(p2 => p2.prb_id===p.id);
let pK = probes_kreis.find(pk => Number(pk[0])===p.id);
return {
prb_id: p.id,
rtt: pR && pR.rtt,
pop_density: pK && Number(pK[2]),
kreis: pK && Number(pK[1])
}
}).filter(p => p.rtt).reduce((kreis, p) => { if (kreis[p.kreis]) { kreis[p.kreis].rtts.push(p.rtt) } else { kreis[p.kreis]={ rtts: [p.rtt], pop_density: p.pop_density} }; return kreis },{})
Insert cell
probes_kreis = d3.text("https://sg-pub.ripe.net/emile/tmp/probes_kreis3.csv").then(text => d3.dsvFormat("\t").parseRows(text))
Insert cell
rttArr = rttFile.map(e => { let a = e.split(" "); return { prb_id: Number(a[0]), af: Number(a[1]), rtt: Number(a[2]) }})
Insert cell
// data = d3.csv("https://gist.githubusercontent.com/mbostock/d63e6019c63887e39e44646696abfb69/raw/5b2b15b4c652167f6c038e717bbe3385dbb9bb99/diamonds.csv", ({carat, price}) => ({x: +carat, y: +price}))
Insert cell
data3 = Object.entries(data2).filter(k => k[1].rtts.length > 3).map(p => ({ name: p[0], y0: d3.min(p[1].rtts), y1: d3.max(p[1].rtts), median: d3.median(p[1].rtts), x: p[1].pop_density}))
Insert cell
data = rttArr.map(r => {
let popDens = probes_kreis.find(prb => Number(prb[0]) === r.prb_id)
return {
y: r.rtt,
x: popDens && Number(popDens[2]) || null
}
}).filter(r => r.x)
Insert cell
d3.min(probes_kreis, d => Number(d[2]))
Insert cell
x = d3.scaleLinear()
.domain([d3.min(bins, d => d.x0), d3.max(bins, d => d.x1)])
.rangeRound([margin.left, width - margin.right])
Insert cell
y = d3.scaleLinear()
.domain([d3.min(bins, d => d.range[0]), d3.max(bins, d => d.range[1])]).nice()
.range([height - margin.bottom, margin.top])
Insert cell
xAxis = g => g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x).ticks(n).tickSizeOuter(0))
Insert cell
yAxis = g => g
.attr("transform", `translate(${margin.left},0)`)
.call(d3.axisLeft(y).ticks(null, "s"))
.call(g => g.select(".domain").remove())
Insert cell
n = width / 30
Insert cell
height = 600
Insert cell
margin = ({top: 20, right: 20, bottom: 30, left: 40})
Insert cell
d3 = require("d3@5")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more