Public
Edited
Feb 26, 2024
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
biking = [
{ day: "Monday", miles: 6.2, time_hr: 0.53 },
{ day: "Tuesday", miles: 10.0, time_hr: 1.02 },
{ day: "Wednesday", miles: 4.9, time_hr: 0.48 },
{ day: "Thursday", miles: 0, time_hr: 0 },
{ day: "Friday", miles: 18.5, time_hr: 1.59 },
{ day: "Saturday", miles: 7.3, time_hr: 0.86 },
{ day: "Sunday", miles: 0, time_hr: 0 }
]
Insert cell
Insert cell
// Find the miles biked on Friday:
biking[4].miles
// Alternatively: biking[biking.map(d => d.day).indexOf("Friday")].miles
Insert cell
Insert cell
// For each day, find the average biking speed.
biking.map((x) => x.miles / x.time_hr)
Insert cell
Insert cell
Insert cell
Insert cell
// Only keep objects (rows) where miles is greater than 10:
biking.filter((x) => x.miles > 10)
Insert cell
Insert cell
// Keep rows for Saturday and Monday:
biking.filter((x) => x.day == 'Saturday' || x.day == 'Monday')
Insert cell
Insert cell
// Keep rows where miles is less than 10 AND time_hr is less than 0.5:
biking.filter((x) => x.miles < 10 && x.time_hr < 0.5)
Insert cell
Insert cell
// Keep rows *except* for Thursday:
biking.filter((x) => x.day != 'Thursday')
Insert cell
Insert cell
Insert cell
// Keep all existing properties; add a new one named 'km' with miles converted to kilometers;
new_biking = biking.map((x) => ({...x, km: x.miles * 1.61}))
Insert cell
Insert cell
Insert cell
carData
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
carTable = aq.from(carData)
Insert cell
Insert cell
// Add your data wrangling (using Arquero) here:
carTable
.select("name", "economy (mpg)", "cylinders", "weight (lb)")
.filter((x) => x["cylinders"] == 4 && x["economy (mpg)"] != null)
.derive({ weight_kg: (x) => x["weight (lb)"] * 0.45 })
.orderby("economy (mpg)")
.rename({ "economy (mpg)": "mpg" })
.view()
Insert cell
Insert cell
Insert cell
Insert cell
world_bank_data.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
// Use Array map and filter to do the wrangling steps above, storing the output as wb2019:
wb2019 = wb
.map((x) => ({
country: x.country,
year: x.year,
co2: x.co2,
region: x.region,
co2_thousands: x.co2 / 1000
}))
.filter((x) => x.year == 2019)
Insert cell
Insert cell
Insert cell
wbTable = aq.from(wb)
Insert cell
Insert cell
// Use Arquero verbs to do the same wrangling steps:
newWBTable = wbTable
.select("country", "year", "co2", "region")
.derive({ co2_thousands: (x) => x.co2 / 1000 })
.filter((x) => x.year == 2019)
.view()
Insert cell
Insert cell
Insert cell
// Create a chart of the top 10 CO2 emitting countries in 2019 (using the wb2019 array created above)
Plot.plot({
marks: [
Plot.barX(wb2019, {
x: "co2",
y: "country",
sort: { y: "x", reverse: true, limit: 10 }
}),
Plot.ruleX([0])
]
})
Insert cell
Insert cell
Insert cell
Insert cell
carData = cars
Insert cell
import {aq, op} from "@uwdata/arquero"
Insert cell
import { showMe } from "@observablehq/show-me"
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more