Published
Edited
Nov 1, 2019
Importers
6 stars
Insert cell
Insert cell
Insert cell
vanMap1 = VegaLite({
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"width": 500,
"height": 300,
"data": {
"values": vanAreaValues2,
"format": {
"type": "topojson",
"feature": "VancouverAreaSize"
}
},
"transform": [{
"lookup": "properties.NAME",
"from": {
"data": {
"values": populations
},
"key": "Area",
"fields": ["Population"]
}
}],
"projection": {
"type": "mercator"
},
"mark": "geoshape",
"encoding": {
"fill": {
"field": "Population",
"type": "quantitative"
},
"stroke": {
"value" : "white"
},
"tooltip":
[
{"field": "properties.NAME", "title": "Name","type": "nominal"},
{"field": "properties.population", "title": "Population", "type": "quantitative"}
]
}
})
Insert cell
vanMapGeoJson = VegaLite({
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"width": 500,
"height": 300,
"data": {
"values": vanAreas,
"format": {
"type": "json",
"property": "features"
}
},
"transform": [{
"lookup": "properties.NAME",
"from": {
"data": {
"values": populations
},
"key": "Area",
"fields": ["Population"]
}
}],
"projection": {
"type": "mercator"
},
"mark": "geoshape",
"encoding": {
"fill": {
"field": "Population",
"type": "quantitative"
},
"stroke": {
"value" : "white"
},
"tooltip":
[
{"field": "properties.NAME", "title": "Name","type": "nominal"},
{"field": "properties.population", "title": "Population", "type": "quantitative"}
]
}
})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
md `This is now using a flat structure to avoid the vega-lite issues with nested objects.`
Insert cell
viewof crimeTotals2 = embed({
"data": {
"values": vanCrime2,
},
selection:
{
"highlight": {"type": "single", "empty": "none", "on": "mouseover"},
"select": {"type": "multi"}
},
mark: "bar",
// transform: [
// {filter: {field: "properties.NEIGHBOURHOOD", oneOf: areaselection2.properties.NAME}}
// ],
encoding: {
color: {
condition: {
// scale: { "range": ['#ff0000', '#00aaff']},
field: "Offense Type",
title: "Offense Type",
selection: "select",
type: "nominal"
},
value: "lightgray"
},
"tooltip":
[
{"field": "Offense Type", "title": "Offense Type","type": "nominal"},
{"field": ".Offense", "title": "Offense","type": "nominal"},
// {"field": "properties.NEIGHBOURHOOD", "title": "Neighbourhood", "type": "nominal"}
],
x: {aggregate: "count", field: "Offense Type",type: "quantitative"},
y: {field: "Offense Type", type: "nominal"}
}
})
Insert cell
areaSelection = Generators.observe(notify => {
const areaSelection = (name, value) => notify(value);
vanMapGrey.addSignalListener("areaSelection", areaSelection);
notify(vanMapGrey.signal("areaSelection"));
return (areaSelection) => vanMapGrey.removeSignalListener("areaSelection", areaSelection);
})
Insert cell
selected = {
let newArray=areaSelection.properties;
return newArray;
}
Insert cell
areaselection2 = {
let anames=[];
if(isEmpty(areaSelection)){
return ["Central Business District","West End","Strathcona","Grandview-Woodland","Mount Pleasant","Fairview","Kensington-Cedar Cottage","Stanley Park","Marpole","Kitsilano","Sunset","Oakridge","Kerrisdale","Hastings-Sunrise","Victoria-Fraserview","South Cambie","Killarney","Riley Park","Dunbar-Southlands","Renfrew-Collingwood", "Arbutus Ridge","Musqueam","West Point Grey","Shaughnessy"]
} else {
console.log(areaSelection.properties.NAME);
let anames=areaSelection;
return anames;
}
}
Insert cell
Insert cell
Insert cell
Insert cell
md `This is a dot map of non-violent crimes in Vancouver in June 2016.`
Insert cell
Insert cell
Insert cell
Insert cell
md `Now let's add in a couple of barcharts with crime totals. And add a brush from the Offense Type. I have to make a separate legend for each chart - coming later!`
Insert cell
vanCrimeTotalsType = VegaLite({
hconcat: [
{
"width": 200,
"height": 100,
"data": {
"values": vanCrime2,
"format":
{
type: "json",
"property": "features",
}
},
selection:
{
"highlight": {"type": "single", "empty": "none", "on": "mouseover"},
"select": {"type": "multi"}
},
mark: "bar",
encoding: {
color: {
condition: {
// scale: { "range": ['#ff0000', '#00aaff']},
field: "Offense Type",
title: "Offense Type",
selection: "select",
type: "nominal"
},
value: "lightgray"
},
"tooltip":
[
{"field": "Offense Type", "title": "Offense Type","type": "nominal"},
{"field": "Offense", "title": "Offense","type": "nominal"},
// {"field": "properties.NEIGHBOURHOOD", "title": "Neighbourhood", "type": "nominal"}
],
x: {aggregate: "count", field: "Offense Type",type: "quantitative"},
y: {field: "Offense Type", type: "nominal"}


},
},
{
"width": 200,
"height": 100,
"data": {
"values": vanCrime,
"format":
{
type: "json",
"property": "features",
}
},
selection:
{
"highlight": {"type": "single", "empty": "none", "on": "mouseover"},
"select": {"type": "multi"}
},
mark: "bar",
size: {field: "properties.Offense", type: "quantitative"},
encoding: {
color: {
condition: {
field: "Offense Type",
scale: { "range": ['#ff0000', '#00aaff']},
title: "Offense Type",
selection: "select",
type: "nominal"
},
value: "lightgray"
},
//"tooltip":
// [
// {"field": "properties.Offense Type", "title": "Offense Type","type": "nominal"},
// {"field": "properties.Offense", "title": "Offense","type": "nominal"},
// {"field": "properties.NEIGHBOURHOOD", "title": "Neighbourhood", "type": "nominal"}
// ]
x: {aggregate: "count", field: "Offense",type: "quantitative"},
y: {field: "Offense", type: "nominal"}

},
}]
})
Insert cell
vanCrimeTotalsOffense = VegaLite({
"width": 300,
"height": 100,
"data": {
"values": vanCrime,
"format":
{
type: "json",
"property": "features",
}
},
"selection": {
"highlight": {"type": "single", "empty": "none", "on": "mouseover"},
"select": {"type": "multi"}
},
mark: "bar",
size: {field: "properties.Offense", type: "quantitative"},
encoding: {
color: {
"condition":
{
"selection": "select",
field: "properties.Offense",
type: "nominal",
scale:
{
"domain": ['Break and Enter Commercial', 'Break and Enter Residential/Other', 'Mischief', 'Other Theft', 'Theft from Vehicle', 'Theft of Bicycle', 'Theft of Vehicle'],
"range": ['#FF0000', '#FF8C00', '#FFD700', '#B22222', '#1E90FF', '#7FFFD4', '#3CB371']
}
},
value: "lightgray"
},
// scale:
// {
// "domain": ['Break and Enter Commercial', 'Break and Enter Residential/Other', 'Mischief', 'Other Theft', 'Theft from Vehicle', 'Theft of Bicycle', 'Theft of Vehicle'],
// "range": ['#FF0000', '#FF8C00', '#FFD700', '#B22222', '#1E90FF', '#7FFFD4', '#3CB371']
// },
x: {aggregate: "count", field: "properties.Offense",type: "quantitative"},
y: {field: "properties.Offense", type: "nominal"}
}
})
Insert cell
md `And now the final test. can i get this to render in the api view? Let's try the example. It appears i have to extract the values from the crime csv into a flatter array?`
Insert cell
vl.markCircle({size: 15, opacity: 1})
.data(vanCrime2)
.project(
vl.projection('mercator')
)
.encode(
vl.longitude().fieldQ('lng'),
vl.latitude().fieldQ('lat'),
vl.color().fieldN('Offense Type'),
)
.width(width)
.height(Math.floor(width / 1.75))
.autosize({type: 'fit-x', contains: 'padding'})
.config({view: {stroke: null}})
.render()
Insert cell
md `And now adding the layers of the area values of the neighbourhoods. This is truly compact code. I wonder if the api will let me configure colours more effectively.`
Insert cell
Insert cell
viewof crimeTotals ={
const brush = vl.selectInterval().encodings('*');
const click = vl.selectMulti().encodings('color');
const crimeSelect = vl.selectMulti().fields('Offense Type');
const scale = {
domain: ['Non-vehicular', 'Vehicular'],
range: ['#00aaff', '#ff0000']
};
const bars = new vl.markBar()
.data(vanCrime2)
.encode(
vl.color().value('lightgray')
.if(crimeSelect, vl.color().fieldN('Offense Type').scale(scale).title('Offense Type')),
vl.x().count(),
vl.y().fieldN('Offense Type').scale({domain: scale.domain}).title('Offense Type')
)
.width(300)
.height(50)
.select(crimeSelect)
.render();
bars.value = crimeSelect;
return(bars);
}
Insert cell
crimesSelected = Generators.observe(notify => {
const crimesSelected = (name, value) => notify(value);
crimeTotals.addSignalListener("crimesSelected", crimesSelected);
notify(crimeTotals.signal("crimesSelected"));
return () => crimeTotals.removeSignalListener("crimesSelected", crimesSelected);
})
Insert cell
Insert cell
md `let's make an array that collects all the appropriate data (populations, densities) into the one array for simpflification.`
Insert cell
Insert cell
d3 = require("d3@5")
Insert cell
import {vl} from '@vega/vega-lite-api'
Insert cell
import {vanPopCleaned} from '@drlynb/vancouver-mapping-102'
Insert cell
import {vanAreaValues} from '@drlynb/vancouver-mapping-102'
Insert cell
import {populations} from '@drlynb/vancouver-mapping-102'
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
embed = require('vega-embed@3')
Insert cell
VegaLite = require('vega-embed@6')
Insert cell
Insert cell
function isEmpty( obj ) {
for ( var prop in obj ) {
return false;
}
return true;
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more