Public
Edited
May 21, 2023
1 fork
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
selectedSubset
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
Insert cell
test-counts-filtered-points.parquet
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
d3.sum(counts, d => d.tokens > 4000 ? 4000 : d.tokens) / 1000 * 0.0004
Insert cell
points = counts.map(d => {
return [d.x, d.y, colorScale.domain.indexOf(d.pile_set_name)]
})
Insert cell
totals = Plot.plot({
caption: `Total tokens per pile set`,
marks: [
Plot.barX(counts, Plot.groupY({x: "sum"}, {y: "pile_set_name", x: "tokens", fill: "pile_set_name", sort: {y: "x", reverse: true, limit: 22}})),
Plot.ruleX([0])
],
marginLeft: 120,
y: {
label: null
},
grid: true
})
Insert cell
colorScale = totals.scale("color")
Insert cell
colors = colorScale.domain.map(d => colorScale.apply(d))
Insert cell
/*
* Simple helper to create a dynamic viewof scatterplot based on:
* - https://observablehq.com/@radames/hello-regl-scatterplot
* - https://observablehq.com/@fil/hello-regl-scatterplot
*/
function createScatterplotView({
width = 600,
height = 340,
pointSize = 2,
points = [[0, 0]],
colors = [],
invalidation
} = {}) {
const canvas = document.createElement("canvas");
const scatterplot = createScatterplot({
canvas,
pointSize,
width,
height,
lassoOnLongPress: true,
backgroundColor: "white"
});

scatterplot.subscribe("select", ({ points }) => {
canvas.value = points;
canvas.dispatchEvent(new Event("input"));
});

scatterplot.set({ colorBy: "valueA", pointColor: colors }); // color by the third value
scatterplot.draw(points);
canvas.scatterplot = scatterplot;

invalidation?.then(() => scatterplot.destroy());

return canvas;
}
Insert cell
createScatterplot = (await require("regl-scatterplot@1")).default
Insert cell
nformat = d3.format(",d")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more