Public
Edited
Feb 27
87 forks
Insert cell
Insert cell
Insert cell
md`### Heading 3`
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
format = d => `${d}%`
Insert cell
Insert cell
iowa = FileAttachment("iowa_counties_topo.json").json()
Insert cell
counties = topojson.feature(iowa, iowa.objects.iowa_counties)
Insert cell
csv_data = d3.csvParse(await FileAttachment("iowa_counties.csv").text(),({FIPS, MED_AGE}) => [+FIPS, +MED_AGE])
Insert cell
data = Object.assign(new Map(csv_data), {title: "Median Age in Census 2010"})
Insert cell
data.get(19059)
Insert cell
med_age = Array.from(csv_data.values(), d => d[1])
Insert cell
YlGnBu = [d3.color("#ffffcc"), d3.color("#a1dab4"), d3.color("#41b6c4"), d3.color("#2c7fb8"),d3.color("#253494")]
Insert cell
naturalbreaks = simple.ckmeans(med_age, YlGnBu.length).map(v => v.pop())
Insert cell
//more information on sequential scales: https://observablehq.com/@d3/sequential-scales
// color = d3.scaleSequentialQuantile([...data.values()], d3.interpolateBlues)

// color = d3.scaleQuantile()
// .domain(med_age)
// .range()

color = d3.scaleThreshold()
.domain(naturalbreaks)
.range(YlGnBu)
Insert cell
width = 975
Insert cell
height = 610
Insert cell
margin = 50
Insert cell
//Rotate the map sets the longitude of origin for our UTM Zone 15N projection.
//projection = d3.geoTransverseMercator().rotate([94,0]).fitExtent([[margin, margin], [width, height]], counties);
//d3 reference for projections: https://d3js.org/d3-geo

//use the following url for specific projection settings: https://github.com/veltman/d3-stateplane
//Use this code to set up the map projection (if different than geographic projection)

projection = d3.geoAlbersUsa().fitExtent([[margin, margin], [width - margin, height - margin]], counties)

//projection = d3.geoMercator().fitExtent([[margin, margin], [width - margin, height - margin]], counties)
Insert cell
//Using a path generator to project geometry onto the map
path = d3.geoPath().projection(projection);
Insert cell
choropleth = {
const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height]);

svg.append("g")
.attr("transform", "translate(365,0)")
.append(() =>
legend({
color: color,
title: data.title,
width: 260,
tickFormat: ".1f"
})
);

svg.append("g")
.selectAll("path")
.data(counties.features)
.join("path")
.attr("stroke", "white")
.attr("stroke-linejoin", "round")
.attr("stroke-width", 1)
// .attr("fill", function(d){
// console.log(color(data.get(d.properties.FIPS)[0]))
// return color(data.get(d.properties.FIPS)[0]);
// })
.attr("fill", d => color(data.get(+d.properties.FIPS)))
.attr("d", path)
.append("title")
.text(d => " Median Age: " + data.get(+d.properties.FIPS));

return svg.node();
}
Insert cell
data.get(19005)
Insert cell
color(data.get(19005))
Insert cell
color(40)
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more