Public
Edited
Mar 6
5 forks
3 stars
Insert cell
md`# Dealing with null values
2019 Yield of crop
bushel per acre`
Insert cell
d3 = require("d3@5")
Insert cell
import {legend} from "@d3/color-legend"
Insert cell
simple = require("simple-statistics@7.0.7/dist/simple-statistics.min.js")
Insert cell
format = d => `${d}%`
Insert cell
topojson = require("topojson-client@3")
Insert cell
iowacount = FileAttachment("countiesandcropiowa.json").json()
Insert cell
counties = topojson.feature(iowacount, iowacount.objects.countiesandcropiowa)
Insert cell
csv_data = d3.csvParse(await FileAttachment("iowacropcountjoin.csv").text(),({NAME, cropdatano__Yield_2019}) => [NAME, +cropdatano__Yield_2019])
Insert cell
data = Object.assign(new Map(csv_data), {title: "Bushels per Acre"})
Insert cell
//Array(99).filter(d => d==0)
//Array(99).filter(d=>0)
//Yield_2019.object.array(99).filter(d => d==0)
//Yieldthisone=domain[d3.min(50),d3.max(300)]
Insert cell
//Yield_2019 = Array.from(csv_data.values(), d => d[1]).filter(d => d > 0)
Insert cell
Yield_2019 = Array.from(csv_data.values(), d => d[1]).filter(d => !isNaN(d))
Insert cell
d3.min(Yield_2019)
Insert cell
YlGnBu = [d3.color("#ffffcc"), d3.color("#a1dab4"), d3.color("#41b6c4"), d3.color("#2c7fb8"),d3.color("#253494")]
Insert cell
naturalbreaks = simple.ckmeans(Yield_2019, YlGnBu.length).map(v => v.pop())
Insert cell
nancolor = d3.color("gray")
Insert cell
nullcolorforlegend = d3.scaleOrdinal()
.domain([NaN])
.range([nancolor])
Insert cell
//more information on sequential scales: https://observablehq.com/@d3/sequential-scales
//color = d3.scaleSequentialQuantile([...data.values()], d3.interpolateBlues)

//color = d3.scaleQuantile()
//.domain(Yield_2019)
//.range(["#ffffcc","#a1dab4","#41b6c4","#2c7fb8","#253494"])

color = d3.scaleThreshold()
.domain(naturalbreaks)
.range(YlGnBu)
//color= d3.scaleQuantize()
//.domain(["])
//.range(["#ffffcc", "#cbc9e2", "#9e9ac8","#756bb1","#54278f"])
Insert cell
width = 975
Insert cell
height = 610
Insert cell
margin = 100
Insert cell
//Rotate the map sets the longitude of origin for our UTM Zone 15N projection.
projection = d3.geoTransverseMercator().rotate([94,0]).fitExtent([[80, 80], [width, height]], counties);
//d3 reference for projections: https://d3js.org/d3-geo

//use the following url for specific projection settings: https://github.com/veltman/d3-stateplane
//Use this code to set up the map projection (if different than geographic projection)

//projection = d3.geoAlbers().fitExtent([[margin, margin], [width - margin, height - margin]], counties)

//projection = d3.geoMercator().fitExtent([[margin, margin], [width - margin, height - margin]], counties)
Insert cell
//Using a path generator to project geometry onto the map
path = d3.geoPath().projection(projection);
Insert cell
choropleth = {
const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height]);

svg.append("g")
.attr("transform", "translate(650,20)")
.append(() =>
legend({
color: nullcolorforlegend,
title: "No Data",
width: 50,
tickFormat: ".1f"
})
);
svg.append("g")
.attr("transform", "translate(360,20)")
.append(() =>
legend({
color: color,
title: data.title,
width: 260,
tickFormat: ".1f"
})
);

svg.append("g")
.selectAll("path")
.data(counties.features)
.join("path")
.attr("stroke", "white")
.attr("stroke-linejoin", "round")
.attr("stroke-width", 1)
.attr("fill", function(d){
if(data.get(d.properties.NAME) > 0){
return color(data.get(d.properties.NAME));
}
else{
return nancolor;
}
})
// .attr("fill", d => color(data.get(d.properties.NAME)[0]))
.attr("d", path)
.append("title")
.text(d => " Yield: " + data.get(d.properties.NAME));
svg.selectAll(".subunit-label")
.data(counties.features)
.enter().append("text")
.attr("class", function(d) { return "subunit-label " + d.id; })
.attr("transform", function(d) { return "translate(" + path.centroid(d) + ")"; })
.attr("fill", function(d){
var value = data.get(d.properties.NAME);
if(value > 0 && value < 210){
return "black";
}
else{
return "white";
}
})
.attr("fill-opacity", "1")
.attr("font-size", "10px")
.attr("font-weight", "300")
.attr("text-anchor", "middle")
.text(function(d) {
return d.properties.NAME;
})

return svg.node();
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more