Published
Edited
Mar 8, 2021
Insert cell
Insert cell
chart = memChart(year)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
dcCensusBlockGroupsUrl = FileAttachment('dc-census.ndjson').url()
Insert cell
Insert cell
Insert cell
getNdjsonStream = async url => {
const { body } = await fetch(url);
const reader = ndjsonStream(body).getReader();
return reader;
}
Insert cell
Insert cell
Insert cell
borders = FileAttachment('dc-borders-topo.json').json()
Insert cell
Insert cell
getProjection = ({ rotate, center, parallels, transverseMercator } = {}) => {
let _projection = transverseMercator
? d3.geoTransverseMercator()
: d3.geoConicConformal().parallels(parallels);

return _projection.rotate(rotate).center(center);
}
Insert cell
projection = {
const { width, height } = dimensions;
const marylandStatePlane = {
rotate: [77, 0],
center: [0, 37.66],
parallels: [38.3, 39.45]
};

return getProjection(marylandStatePlane).fitSize(
[width, height],
topojson.feature(borders, borders.objects['dc-borders'])
);
}
Insert cell
Insert cell
generateDensity = (feature, ethnicity_column, year, context) => {
if (feature === undefined || feature === null) return;

const { properties } = feature;
const bounds = geopath.bounds(feature);
const populationData = Math.round(
properties[`${ethnicity_column}${censusYearMap[year]}`] / peoplePerPoint
);

if (!populationData) return;

// https://github.com/d3/d3-geo#path_bounds
const x_min = bounds[0][0];
const x_max = bounds[1][0];
const y_min = bounds[0][1];
const y_max = bounds[1][1];

let hits = 0;
let count = 0;

const limit = populationData * 10; // limit test to 10x the population.

let points = [];
while (hits < populationData - 1 && count < limit) {
const lat = y_min + Math.random() * (y_max - y_min);
const lng = x_min + Math.random() * (x_max - x_min);

const randomPoint = turf.point([lng, lat], {
color: colorScheme[ethnicity_column]
});

if (turf.booleanPointInPolygon(randomPoint, feature)) {
points.push(randomPoint);
hits++;
}

count++;
}

return turf.featureCollection(points);
}
Insert cell
Insert cell
drawDensity = ({ features }, context) => {
for (const feature of features) {
const {
properties: { color }
} = feature;

const {
geometry: {
coordinates: [x, y]
}
} = feature;

context.fillStyle = color;
context.fillRect(x, y, 1, 1);
}

return context;
}
Insert cell
Insert cell
drawBorder = (topojsonCollection, context) => {
geopath.context(context)(
d3.geoProject(topojson.mesh(topojsonCollection), projection)
);
context.globalAlpha = 1;
context.strokeStyle = strokeColor;
context.stroke();

return context;
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more